Hotař, A.; Kejzlar, P.; Palm, M.; Mlnařík, J.: The effect of Zr on high-temperature oxidation behaviour of Fe3Al-based alloys. Corrosion Science 100, pp. 147 - 157 (2015)
Kratochvíl, P.; Pešička, J.; Král, R.; Švec, M.; Palm, M.: Evaluation of solid solution hardening of Fe-27 at. pct Al by vanadium and comparison to precipitation strengthening by vanadium carbides. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46 (11), pp. 5091 - 5094 (2015)
He, C.; Stein, F.; Palm, M.: Thermodynamic description of the systems Co–Nb, Al–Nb and Co–Al–Nb. Journal of Alloys and Compounds 637, pp. 361 - 375 (2015)
Li, X.; Prokopčáková, P.; Palm, M.: Microstructure and mechanical properties of Fe–Al–Ti–B alloys with additions of Mo and W. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 611, pp. 234 - 241 (2014)
Löffler, F.; Sauthoff, G.; Palm, M.: Determination of phase equilibria in the Fe–Mg–Si system. International Journal of Materials Research 102 (8), pp. 1042 - 1047 (2011)
Strondl, A.; Palm, M.; Gnauk, J.; Frommeyer, G.: Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Materials Science and Technology 27 (5), pp. 876 - 883 (2011)
Vogel, S. C.; Stein, F.; Palm, M.: Investigation of the ε-Phase in the Fe–Al System by High Temperature Neutron Diffraction. Applied Physics A 99 (3), pp. 607 - 611 (2010)
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.