Mayrhofer, K. J. J.: Stability Investigations of Electrocatalysts for Electrochemical Energy Conversion. Seminar lecture at Helmholtz-Zentrum Berlin, Berlin, Germany (2014)
Rossrucker, L.; Schulz, J.; Krebs, S.; Mayrhofer, K. J. J.: A microelectrochemical flow cell coupled to ICP-MS for corrosion investigation of zinc alloys. Gordon Research Seminar on Corrosion – Aqueous, New London, NH, USA (2014)
Grote, J.-P.; Žeradjanin, A. R.; Cherevko, S.; Mayrhofer, K. J. J.: Electrochemical CO2 reduction: A Combinatorial High-Throughput Approach for Catalytic Activity, Stability, and Selectivity Investigations. 247th ACS National Meeting, Dallas, TX, USA (2014)
Mayrhofer, K. J. J.: Scanning Electrochemical Microscopy: Reading, Writing, Monitoring of Functional Interfaces. 65th Annual Meeting of the International Society of Electrochemistry, Symposium, Lausanne, Switzerland (2014)
Mayrhofer, K. J. J.: Basic Science and Key Technologies for Future Applications. Electrochemistry 2014, Johannes Gutentenberg-Universität Mainz, Mainz, Germany (2014)
Mayrhofer, K. J. J.: Combinatorial study of fundamental electrocatalyst performance of materials for oxygen evolution. Heraeus seminar "From Sunlight to Fuels - Novel Materials and Processes for Photovoltaic and (Photo)Catalytic Applications", Bad Honnef, Germany (2014)
Mayrhofer, K. J. J.: Oxygen electrochemistry as a cornerstone for sustainable energy conversion. International Symposium „Recent Achievements and Future Trends in Electrocatalysis“, Erlangen, Germany (2014)
Mayrhofer, K. J. J.: Stability of catalyst materials - the key for the deployment of electrochemical energy conversion. Seminar lecture at Gesellschaft Deutscher Chemiker, Mülheim/Ruhr, Germany (2014)
Mayrhofer, K. J. J.: Electrochemical Energy Conversion – The key for sustainable utilization of solar energy. Pregl Seminar lecture, National Institute of Chemistry, Ljubljana, Slovenia (2014)
Mayrhofer, K. J. J.: Kombinatorische elektrokatalytische CO2-Reduktion – ECCO2. BMBF Statuskonferenz „Technologien für Nachhaltigkeit und Klimaschutz – Chemische Prozesse und stoffliche Nutzung von CO2“, Königswinter, Germany (2014)
Mayrhofer, K. J. J.: Stability Investigations of Electrocatalysts for Electrochemical Energy Conversion. Annual Symposium of the KNCV Working Group on Electrochemistry, Leiden, The Netherlands (2013)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…