Zambaldi, C.; Raabe, D.: Surface Topographies after Nanoindentation and their Utilization to Quantify the Plastic Anisotropy of Gamma-TiAl on the Single Crystal Length Scale. MMM 2010, Freiburg, Germany (2010)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments to improve the micromechanical understanding of single crystal gamma-TiAl and gamma-TiAl based microstructures. MMM 2010 Fifth International Conference Multiscale Materials Modeling, Freiburg, Germany (2010)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Surface Topographies after Nanoindentation and their Utilization to Quantify the Plastic Anisotropy of Gamma-TiAl on the Single Crystal Length Scale. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Zambaldi, C.; Roters, F.; Raabe, D.: How nanoindentation experiments and continuum crystal plasticity simulation can efficiently complement TEM dislocation analysis. 2nd Newcastle Nanoindentation Conference, Newcastle upon Tyne, UK (2010)
Zambaldi, C.; Raabe, D.; Roters, F.: Quantifying the plastic anisotropy of gamma-TiAl by axisymmetric indentation. International TiAl Workshop, Birmingham, UK (2010)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Crystal plasticity modeling for property extraction and the microstructure properties relation of intermetallic -TiAl nased alloys. 1st International Conference on Material Modelling (ICMM 1), Dortmund, Germany (2009)
Zambaldi, C.; Roters, F.; Raabe, D.: Crystal plasticity modeling and experiments for the microstructureproperties relationship in gamma TiAl based alloys. 15th International Conference on the Strength of Materials (ICSMA-15), Dresden, Germany (2009)
Zambaldi, C.; Roters, F.; Zaefferer, S.; Raabe, D.: Ductility of Gamma-TiAl-Based Microstructures in the Light of Deformation Mode Interaction-Crystal Plasticity Modeling and Micro-Mechanical Experiments. MRS Fall Conference 2008, Boston, MA, USA (2008)
Zambaldi, C.; Wright, S. I.; Zaefferer, S.: Determination of Texture and Microstructure of Ordering Domains in gamma-TiAl. 15th International Conference on the Texture of Materials (ICOTOM 15), Pittsburgh, PA, USA (2008)
Zambaldi, C.; Zaefferer, S.; Roters, F.; Raabe, D.: Micro-mechanical implications of TiAl order domains. The annual plenary meeting of the EU sixth framework programme IMPRESS integrated project, Camogli, Italy (2008)
Zambaldi, C.; Zaefferer, S.; Roters, F.: Order domains in intermetallic TiAl - EBSD characterization and crystal plasticity modeling. GLADD meeting, University of Gent, Gent, Belgium (2008)
Zambaldi, C.: Primary Recrystallization of a Single-Crystal Nickel-Base Superalloy — Simulations and Experimental Results. High Temperature Alloys Workshop and Summer School, Bad Berneck (2006)
Zambaldi, C.; Roters, F.; Raabe, D.: Spherical indentation modeling for the investigation of primary recrystallization in a single-crystal nickel-base superalloy. Plasticity, Halifax, Canada (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.; Zambaldi, C.: 3D EBSD characterization and crystal plasticity FE simulation of the texture and microstructure below a nanoindent in Cu. Plasticity Conference 2006, Halifax, Canada (2006)
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
In this project we study - together with the department of Prof. Neugebauer and Dr. Sandlöbes at RWTH Aachen - the underlying mechanisms that are responsible for the improved room-temperature ductility in Mg–Y alloys compared to pure Mg.
Efficient harvesting of sunlight and (photo-)electrochemical conversion into solar fuels is an emerging energy technology with enormous promise. Such emerging technologies depend critically on materials systems, in which the integration of dissimilar components and the internal interfaces that arise between them determine the functionality.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…
The project Hydrogen Embrittlement Protection Coating (HEPCO) addresses the critical aspects of hydrogen permeation and embrittlement by developing novel strategies for coating and characterizing hydrogen permeation barrier layers for valves and pumps used for hydrogen storage and transport applications.