Springer, H.; Tasan, C. C.; Raabe, D.: A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials. International Journal of Materials Research 106 (1), pp. 3 - 14 (2015)
Tasan, C. C.; Hoefnagels, J. P.M.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D.: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity 63, pp. 198 - 210 (2014)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia 79, pp. 268 - 281 (2014)
Yao, M.; Pradeep, K. G.; Tasan, C. C.; Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia 72–73, pp. 5 - 8 (2014)
Tasan, C. C.; Hoefnagels, J. P. M.; Dekkers, E. C. A.; Geers, M. G. D.: Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture. Experimental Mechanics 52 (7), pp. 669 - 678 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M.G. D.: Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution. Acta Materialia 60 (8), pp. 3581 - 3589 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M. G. D.: A micropillar compression methodology for ductile damage quantification. Metallurgical and Materials Transactions A 43 (3), pp. 796 - 801 (2012)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: Microstructural Banding Effects Clarified Through Micrographic Digital Image Correlation. Scripta Materialia 62 (11), pp. 835 - 838 (2010)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms. Scripta Materialia 61 (1), pp. 20 - 23 (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one. With this project, we aim to…