Dehm, G.: Experimental Insights in Congruent and Non-Congruent Grain Boundary Phase Transformations in Copper by Advanced STEM. International Seminars, Technion - Israel Institute of Technology (Israel), Purdue University (USA), virtual (2021)
Dehm, G.: Congruent and non-congruent grain boundary phase transformations in Copper studied by advanced STEM. Virtual Seminar of Institute Jozef Stefan, Ljubljana, Slovenia (2021)
Liebscher, C.; Lu, W.; Dehm, G.; Raabe, D.; Li, Z.: Complex phase transformation pathways in high entropy alloys explored by in situ S/TEM. Third International Conference on High Entropy Materials, Berlin, Germany (2020)
Ahmad, S.; Liebscher, C.; Dehm, G.: To decipher the novel atomic structure of [111] tilt grain boundaries in Al. Material Science and Engineering Congress - MSE 2020, virtual, Darmstadt, Germany (2020)
Devulapalli, V.; Dehm, G.; Liebscher, C.: Unravelling grain boundary structures in Ti thin films using aberration-corrected transmission electron microscopy. MSE Darmdtadt (Virtual), Darmstadt, Germany (2020)
Saood, S.; Liebscher, C.; Dehm, G.: Observing the atomic structure of high angle [111] tilt grain boundaries in Al. Materials Science and Engineering Congress MSE 2020, virtual (2020)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution during tribology in cementite. Materials Science and Engineering Congress (MSE) 2020, online, Darmstadt, Germany (2020)
Hosseinabadi, R.; Dehm, G.; Kirchlechner, C.: Size effect in bi-crystalline Cu micropillars with a coherent twin boundary. DGM Arbeitskreistreffen Rasterkraftmikroskopie und nanomechanische Methoden, online (2020)
Duarte, M. J.; Fang, X.; Rao, J.; Dehm, G.: Hydrogen-microstructure interactions at small scale by in-situ nanoindentation during hydrogen charging. Nanobrücken 2020: A nanomechanical Testing Conference, Düsseldorf, Germany (2020)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The prediction of materials properties with ab initio based methods is a highly successful strategy in materials science. While the working horse density functional theory (DFT) was originally designed to describe the performance of materials in the ground state, the extension of these methods to finite temperatures has seen remarkable…
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
This work led so far to several high impact publications: for the first time nanobeam diffraction (NBD) orientation mapping was used on atom probe tips, thereby enabling the high throughput characterization of grain boundary segregation as well as the crystallographic identification of phases.
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
In 2020, an interdepartmental software task force (STF) was formed to serve as a forum for discussion on topics related to software development and digital workflows at the MPIE. A central goal was to facilitate interdepartmental collaboration by co-developing and integrating workflows, aligning internally developed software, and rolling out…
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.