Palm, M.; Stein, F.: Phase Equilibria in the Al-Rich Part of the Al–Ti System. In: Gamma Titanium Aluminides 1999, TMS, pp. 161 - 168 (Eds. Kim, Y.-W.; Dimiduk, D. M.; Loretto, M. H.). Gamma Titanium Aluminides 1999, Warrendale, PA, USA. (1999)
Palm, M.; Gorzel, A. H.; Letzig, D.; Sauthoff, G.: Structure and Mechanical Properties of Ti–Al–Fe Alloys at Ambient and High Temperatures. In: Structural Intermetallics 1997, pp. 885 - 893. TMS, Orlando, FL, USA, 1997. TMS, Warrendale, USA (1997)
Palm, M.; Inden, G.: Constitution of Ternary Aluminide Systems as Basis for Materials Development. In: Structural Intermetallics 1997, pp. 73 - 82. TMS, Orlando, FL, USA, 1997. TMS, Warrendale, USA (1997)
Palm, M.; Kainuma, R.; Inden, G.: Reinvestigation of Phase Equilibria in the Ti-rich Part of the Ti–Al System. In: Revue de Métallurgie, SF2M - JA96, p. 198. SF2M - JA96, Paris, France, October 15, 1996 - October 17, 1996. (1996)
Palm, M.; Thomas, N.; Inden, G.: The Fe–Al–Ti System. In: Revue de Métallurgie, SF2M - JA96, p. 197. SF2M - JA96, Paris, France, October 15, 1996 - October 17, 1996. (1996)
Kainuma, R.; Palm, M.; Inden, G.: Experimental Investigation of High Temperature Equilibria in the Ti–Al System. In: Proceedings CALPHAD XXII, p. 90. CALPHAD XXII, Salou, Spain, May 16, 1993 - May 22, 1993. (1993)
Palm, M.; Inden, G.: Experimentelle Bestimmung der Phasengleichgewichte in den Systemen Fe–Al–Ti und Fe–Al–Cr. Materialkundliche Gefüge-, Bruch- und Oberflächen¬un¬tersu¬chung in Werkstoffentwicklung, Qualitätssicherung und Schadensforschung, DVM Arbeitskreis Rastermikroskopie in der Materialprüfung. Sitzungsberichte 15, pp. 61 - 70 (1992)
Palm, M.; Inden, G.: Experimental Determination of the Phase Equilibria in the Fe–Al–C System. In: Proceedings CALPHAD XIX, p. 72. CALPHAD XIX, Noordwijkerhout , Noordwijkerhout, The Netherlands, June 18, 1990 - June 22, 1990. (1990)
Stein, F.; Distl, B.; Palm, M.; Hauschildt, J.; Rackel, M. W.; Pyczak, F.; Mayer, S.; Yang, Y.; Chen, H.-L.; Engström, A.: Improvement of a CALPHAD Database for the Development of Next Generation TiAl Alloys by Targeted Key Experiments on High-temperature Phase Equilibria – The EU Project ADVANCE. Hume-Rothery Symposium: Phase Equilibria and Kinetics for Materials Design and Engineering, TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
Distl, B.; Palm, M.; Stein, F.: High-temperature phase equilibria in ternary Ti–Al–Nb alloy. 17th Discussion Meeting on Thermodynamics of Alloys (TOFA), Kloster Banz, Bad Staffelstein, Germany (2020)
Kahrobaee, Z.; Stein, F.; Palm, M.: Experimental Investigation of Phase Equilibria in the Ti−Al−Zr System for Improvement of a CALPHAD Database. TOFA 2020, Discussion Meeting on Thermodynamics of Alloys
Educational Center Kloster Banz
, Bad Staffelstein, Germany (2020)
Distl, B.; Kahrobaee, Z.; Palm, M.; Stein, F.: ADVANCE – New Experimental Data on Ti–Al–X (X = Nb, Mo, W, Zr, Si, B, C, O) Systems to Develop an Improved CALPHAD Database for Next Generation Ti–Al Alloys. French-German Workshop of the DGM Fachausschuss Thermodynamik, Kinetik und Konstitution der Werkstoffe, ICMPE-CNRS-Paris Est, Thiais, France (2019)
Palm, M.; Distl, B.; Kahrobaee, Z.; Stein, F.; Mayer, S.; Hauschildt, K.; Rackel, M.; Pyczak, F.; Yang, Y.; Chen, H.-L.et al.; Engström, A.: ADVANCE - Advancing a CALPHAD Database for Next Generation TiAl Alloys. 65th Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2019)
Zavašnik, J.; Peng, J.; Palm, M.: TEM Analysis of the oxidation scale grown on iron aluminides. 27. International Conference on Materials and Technology (27. ICM&T)
, Portorož, Slovenia (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Understanding hydrogen-assisted embrittlement of advanced high-strength steels is decisive for their application in automotive industry. Ab initio simulations have been employed in studying the hydrogen trapping of Cr/Mn containing iron carbides and the implication for hydrogen embrittlement.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…