Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. American Physics Society March Meeting, New Orleans, LA, USA (2008)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing N solubility in diluted nitrides by surface kinetics: An ab-initio study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Freysoldt, C.; Neugebauer, J.: Charged defects in a supercell formalism: From an empirical to a fully ab-initio treatment of finite-size effects. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Grabowski, B.; Ismer, L.; Hickel, T.; Neugebauer, J.: Ab initio up to the melting point: Influence of vacancies and explicit anharmonicity. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Kim, O.; Friák, M.; Neugebauer, J.: Ab initio analysis of the carbon solubility limits in various iron phases. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Lymperakis, L.; Neugebauer, J.: Thermodynamics and adatom kinetics of non-polar GaN surfaces. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Marquardt, O.; Hickel, T.; Neugebauer, J.: Plane-wave implementation of the k.p-formalism including strain and piezoelectricity to study the optical properties of semiconductor nanostructures. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Todorova, M.; Neugebauer, J.: A new approach to obtain electrochemical E/pH diagrams derived from the viewpoint of semiconductor defects. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Udyansky, A.; Friák, M.; Neugebauer, J.: An ab-initio study of the phase transitions in the interstitial Fe–C solid solutions. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Uijttewaal, M.; Hickel, T.; Neugebauer, J.: Phase transformations of Ni2MnGa shape memory alloy from first principles. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
von Pezold, J.; Neugebauer, J.: Hydrogen enhanced local plasticity - An atomistic study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Neugebauer, J.: Ab initio design of engineering materials: Status and challenges. UCSB-MPG Workshop on Inorganic Materials for Energy Conversion, Storage and Conservation, UCLA Lake Arrowhead Conference Center, CA, USA (2008)
Neugebauer, J.: Ab initio based modeling of engineering materials: From a predictive thermodynamic description to tailored mechanical properties. UCSB Seminar, University of California, Santa Barbara, USA (2008)
Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: First principles Determination of Phase Transitions in Magnetic Shape Memory Alloys. Group Seminar in Materials Department, University of California (UCSB), Santa Barbara, CA, USA (2008)
Counts, W. A.; Friák, M.; Raabe, D.; Neugebauer, J.: Using Ab Initio to Predict Engineering Parameters in bcc Magnesium-Lithium Alloys. Deutsche Physikalische Gesellschaft Meeting, Berlin, Germany (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.