Bashir, A.; Heck, A.; Narita, A.; Feng, X.; Nefedov, A.; Rohwerder, M.; Müllen, K.; Elstner, M.; Wöll, C. H.: Charge carrier mobilities in organic semiconductors: crystal engineering and the importance of molecular contacts. Physical Chemistry Chemical Physics 17 (34), pp. 21988 - 21996 (2015)
Merzlikin, S. V.; Borodin, S.; Vogel, D.; Rohwerder, M.: Ultra high vacuum high precision low background setup with temperature control for thermal desorption mass spectroscopy (TDA-MS) of hydrogen in metals. Talanta 136, pp. 108 - 113 (2015)
Auinger, M.; Müller-Lorenz, E. M.; Rohwerder, M.: Modelling and experiment of selective oxidation and nitridation of binary model alloys at 700 degrees C - The systems Fe, 1 wt.%{Al, Cr, Mn, Si}. Corrosion Science 90, pp. 503 - 510 (2015)
Luo, Y.; Wang, X.; Guo, W.; Rohwerder, M.: Growth behavior of initial product layer formed on Mg alloy surface induced by polyaniline. Journal of the Electrochemical Society 162 (6), pp. C294 - C301 (2015)
Auinger, M.; Vogel, A.; Vogel, D.; Rohwerder, M.: Early stages of oxidation observed by in situ thermogravimetry in low pressure atmospheres. Corrosion Science 86, pp. 183 - 188 (2014)
Rohwerder, M.: Special edition on the occasion of the 60th birthday of Martin Stratmann. Materials and Corrosion-Werkstoffe und Korrosion 65 (4), p. 344 - 344 (2014)
Vimalanandan, A.; Bashir, A.; Rohwerder, M.: Zn–Mg and Zn–Mg–Al alloys for improved corrosion protection of steel: Some new aspects. Materials and Corrosion - Werkstoffe und Korrosion 65 (4), pp. 392 - 400 (2014)
Auinger, M.; Vogel, A.; Praig, V. G.; Danninger, H.; Rohwerder, M.: Thermogravimetry and insitu mass spectrometry at high temperatures compared to theoretical modelling - The weight loss during selective decarburisation at 800 °C. Corrosion Science 78, pp. 188 - 192 (2014)
Krieg, R.; Vimalanandan, A.; Rohwerder, M.: Corrosion of Zinc and Zn–Mg Alloys with Varying Microstructures and Magnesium Contents. Journal of the Electrochemical Society 161 (3), pp. C156 - C161 (2014)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…