Luo, W.; Kirchlechner, C.; Fang, X.; Brinckmann, S.; Dehm, G.; Stein, F.: Influence of composition and crystal structure on the fracture toughness of NbCo2 Laves phase studied by micro-cantilever bending tests. Materials and Design 145, pp. 116 - 121 (2018)
Brinckmann, S.; Matoy, K.; Kirchlechner, C.; Dehm, G.: On the influence of microcantilever pre-crack geometries on the apparent fracture toughness of brittle materials. Acta Materialia 136, pp. 281 - 287 (2017)
Brinckmann, S.; Kirchlechner, C.; Dehm, G.: Stress intensity factor dependence on anisotropy and geometry during micro-fracture experiments. Scripta Materialia 127, pp. 76 - 78 (2017)
Boyce, B. L.; Kramer, S. L. B.; Fang, H. E.; Cordova, T. E.; Neilsen, M. K.; Dion, K. N.; Kaczmarowski, A. K.; Karasz, E.; Xue, L.; Gross, A. J.et al.; Ghahremaninezhad, A.; Ravi-Chandar, K.; Lin, S.-P.; Chi, S.-W.; Chen, J.-S.; Yreux, E.; Rüter, M.; Qian, D.; Zhou, Z.; Bhamare, S.; O'Connor, D. T.; Tang, S.; Elkhodary, K. I.; Zhao, J.; Hochhalter, J. D.; Cerrone, A. R.; Ingraffea, A. R.; Wawrzynek, P. A.; Carter, B. J.; Emery, J. M.; Veilleux, M. G.; Yang, P.; Gan, Y.; Zhang, X.; Chen, Z.; Madenci, E.; Kilic, B.; Zhang, T.; Fang, E.; Liu, P.; Lua, J. Y.; Nahshon, K.; Miraglia, M.; Cruce, J.; Defrese, R.; Moyer, E. T.; Brinckmann, S.; Quinkert, L.; Pack, K.; Luo, M.; Wierzbicki, T.: The sandia fracture challenge: Blind round robin predictions of ductile tearing. International Journal of Fracture 186 (1-2), pp. 5 - 68 (2014)
Brinckmann, S.; Quinkert, L.: Ductile tearing: Applicability of a modular approach using cohesive zones and damage mechanics. International Journal of Fracture 186 (1-2), pp. 141 - 154 (2014)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution in cementite (Fe3C) during small-scale tribology. European Congress and Exhibition on Advanced Materials and Processes - EUROMAT 2021, Virtual (2021)
Tsybenko, H.; Dehm, G.; Brinckmann, S.: Deformation and chemical evolution during tribology in cementite. Materials Science and Engineering Congress (MSE) 2020, online, Darmstadt, Germany (2020)
Brinckmann, S.; Dehm, G.: Severe deformation of a lamellar microstructure: pearlitic steel as a case study. TMS 2019 Annual Meeting & Exhibition, San Antonio, TX, USA (2019)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.