Kumar, P.; Kassner, M.E.; Blum, W.; Eisenlohr, P.: New Observations on High Temperature Creep at Very Low Stresses. Creep 2008, Bad Berneck, Germany (2008)
Sadrabadi, P.; Eisenlohr, P.; Wehrhan, G.; Stäblein, J.; Parthier, L.; Blum, W.: Evolution of dislocation structure and deformation resistance in creep exemplified on single crystals of CaF₂. Creep 2008, Bad Berneck, Germany (2008)
Eisenlohr, P.: How to Bridge from Microstructure to Continuum in Crystal Plasticity FEM. MPIE inter-departmental tutorial day(s) 2008, MPI für Eisenforschung GmbH, Düsseldorf, Germany (2008)
Bieler, T. R.; Eisenlohr, P.; Kumar, D.; Crimp, M. A.; Roters, F.; Raabe, D.: Localized Twin Shear at Grain Boundaries Leading to Fracture Nucleation. TMS annual meeting, New Orleans, LA, USA (2008)
Bieler, T. R.; Eisenlohr, P.; Kumar, D.; Crimp, M. A.; Roters, F.; Raabe, D.: Predicting Microcrack Nucleation Due to Slip-Twin Interactions at Grain Boundaries in Duplex Near Gamma-TiAl. TMS annual meeting, New Orleans, LA, USA (2008)
Eisenlohr, P.; Hantcherli, L.; Bastos, A.; Raabe, D.: Mechanismen bei der Verformung hochfester Stähle: Charakterisierung, Simulation, Eigenschaften. 29. Symposium des Arbeitskreises "Mathematik in Forschung und Praxis" über "Neue Modelle zur Simulation höchstfester Stähle", Bad Honnef, Germany (2007)
Eisenlohr, P.: Coarse-graining schemes for forming simulations of dualphase steels. International Max-Planck Workshop "Multiscale Materials Modeling of Condensed Matter", Sant Feliu de Guixols, Spain (2007)
Hantcherli, L.; Eisenlohr, P.; Roters, F.; Raabe, D.: Application of a Phenomenological Approach to Mechanical Twinning in Crystal Plasticity Finite Element Modelling of High-Mn Steel. EUROMAT 2007, Nürnberg, Germany (2007)
Blum, W.; Eisenlohr, P.; Amberger, D.; Milička, K.; Göken, M.: Microstructure - Plasticity relationship of Mg-alloys at elevated temperatures. 100th Eastern Forum of Science and Technology "Adv. Magnesium Alloys and Their Applications", Shanghai, China (2007)
Eisenlohr, P.; Roters, F.: Efficient and highly accurate reconstruction of ODFs with discrete orientations using integral approximation. GLADD Meeting, Katholieke Universiteit Leuven, Belgium (2007)
Blum, W.; Eisenlohr, P.; Zeng, X. H.; Milička, K.: Creep of Mg-alloys. Int. Symp. on Magnesium Technology in the Global Age, CIM and TMS, Montréal, Canada (2006)
Zeng, X. H.; Eisenlohr, P.; Blum, W.: Modeling the influence of grain boundaries on deformation resistance by statistical dislocation theory. MMM Third International Conference Multiscale Materials Modeling, Freiburg (2006)
Eisenlohr, P.: Modeling deformation kinetics. Symposium on the occasion of Prof. W. Blum's 65th birthday, Universität Erlangen-Nürnberg, Erlangen, Germany (2005)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.