Pfanner, G.; Freysoldt, C.; Neugebauer, J.; Gerstmann, U.: Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion. Physical Review B 85 (19), 195202, pp. 1 - 8 (2012)
Schmidt, W. G.; Wippermann, S. M.; Rauls, E.; Gerstmann, U.; Sanna, S.; Thierfelder, C.; Landmann, M.; dos Santos, L. S.: Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations. In: High Performance Computing in Science and Engineering 2010, pp. 149 - 158. 14th Annual Results and Review Workshop on High Performance Computing in Science and Engineering, Stuttgart University, Stuttgart, Germany, October 04, 2010 - October 05, 2010. Springer-Verlag Berlin, Berlin, Germany (2011)
Schmidt, W. G.; Blankenburg, S.; Rauls, E.; Wippermann, S. M.; Gerstmann, U.; Sanna, S.; Thierfelder, C.; Koch, N.; Landmann, M.: Understanding Long-range Indirect Interactions Between Surface Adsorbed Molecules. In: High Performance Computing in Science and Engineering 2009, pp. 75 - 84. 12th Results and Review Workshop on High Performance Computing in
Science and Engineering, Stuttgart University , Stuttgart, Germany, October 08, 2009 - October 09, 2009. (2010)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.