Clemens, H.; Mayer, S.; Scheu, C.: Microstructure and Properties of Engineering Materials. In: Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications: Second Edition, pp. 3 - 20 (Eds. Schreyer, A.; Clemens, H.; Mayer, S.). wiley, Hoboken, NJ, USA (2017)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2019. Intermetallics 2019, Educational Center Kloster Banz, Bad Staffelstein, Germany, September 30, 2019 - October 04, 2019. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2019)
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings Intermetallics 2017. Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Congressmanagement & Marketing GmbH, Jena, Germany (2017), 220 pp.
Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F. (Eds.): Proceedings: Intermetallics 2015, International Conference. Intermetallics 2015, International Conference, Bad Staffelstein, Germany, September 28, 2015 - October 02, 2015. Congressmanagement & Marketing GmbH, Jena, Germany (2015), 116 pp.
Clemens, H. J.; Schmoelzer, T.; Schloffer, M.; Schwaighofer, E.; Mayer, S.; Dehm, G.: Physical metallurgy and properties of β-solidifying TiAl based alloys. In: Materials Research Society symposium proceedings, Vol. 1295, pp. 95 - 100. Materials Research Society Symposium N – Intermetallic-Based Alloys for Structural and Functional Applications , San Francisco, CA, USA, April 25, 2011 - April 29, 2011. Materials Research Society: MRS, Leoben, Austria (2011)
Bischof , M.; Mayer, S.; Leitner, H.; Clemens , H.; Pranzas, K.; Staron, P.; Dehm, G.; Knabl , W.; Voiticek, A.; Geiger, E.: Microstructure and Mechanical Properties of Si and Y Doped Tantalum. In: Proceedings of the 16th International Plansee Seminar 2005, Vol. 1, pp. 489 - 503. 16th International Plansee Seminar 2005, Reutte, Austria, May 30, 2005 - June 03, 2005. (2005)
Stein, F.; Distl, B.; Palm, M.; Hauschildt, J.; Rackel, M. W.; Pyczak, F.; Mayer, S.; Yang, Y.; Chen, H.-L.; Engström, A.: Improvement of a CALPHAD Database for the Development of Next Generation TiAl Alloys by Targeted Key Experiments on High-temperature Phase Equilibria – The EU Project ADVANCE. Hume-Rothery Symposium: Phase Equilibria and Kinetics for Materials Design and Engineering, TMS 2020 Annual Meeting & Exhibition, San Diego, CA, USA (2020)
Palm, M.; Distl, B.; Kahrobaee, Z.; Stein, F.; Mayer, S.; Hauschildt, K.; Rackel, M.; Pyczak, F.; Yang, Y.; Chen, H.-L.et al.; Engström, A.: ADVANCE - Advancing a CALPHAD Database for Next Generation TiAl Alloys. 65th Metal Research Colloquium organized by the Department for Metal Research and Materials Testing of the University Leoben, Lech am Arlberg, Austria (2019)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…