Möbus, G.; Schumann, E.; Dehm, G.; Rühle, M.: Measurement of Coherency States of Metal-Ceramic Interfaces by HRTEM Image Processing. Physica Status Solidi A 150 (1), pp. 77 - 87 (1995)
Dehm, G.; Rühle, M.; Ding, G.; Raj, R.: Growth and Structure of Copper Thin Films Deposited on (0001) Sapphire by Molecular Beam Epitaxy. Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics Electronic Optical and Magnetic Properties 71 (6), pp. 1111 - 1124 (1995)
Kirchlechner, C.; Kečkéš, J.; Micha, J.-S.; Dehm, G.: In Situ μLaue: Instrumental Setup for the Deformation of Micron Sized Samples. In: Neutrons and Synchrotron Radiation in Engineering Materials Science: From Fundamentals to Applications: Second Edition, pp. 425 - 438 (Eds. Staron, P.; Schreyer, A.; Clemens, H.; Mayer, S.). wiley, Hoboken, NJ, USA (2017)
Dehm, G.; Legros, M.; Kiener, D.: In-situ TEM Straining Experiments: Recent Progress in Stages and Small-Scale Mechanics. In: In-situ Electron Microscopy: SEM and TEM Applications in Physics, Chemistry and Materials Science, pp. 227 - 254 (Ed. Dehm, G.). Wiley VCH Verlag, Weinheim, Germany (2012)
Dehm, G.: Das Erich-Schmid-Institut für Materialwissenschaft (ESI) der Österreichischen Akademie der Wissenschaften. In: Handbuch der Nanoanalytik Steiermark, NanoNet Styria, 1 Ed., pp. 1 - 311 (Ed. Rom , W.). W. Rom, Graz, Austria (2005)
Dehm, G.; Müllner, P.: TEM-Observation of Dislocations in Polycrystalline Metal Films. In: The Encyclopedia of Materials: Science and Technology, Vol. 1, pp. 2329 - 2331 (Eds. Buschow, .H.J.; Cahn, R.; Flemings, M.; Ilschner, .; Kramer, E. et al.) (2001)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Bieler, S.; Kang, S. G.; Heußen, D.; Ramachandramoorthy, R.; Dehm, G.; Weinberg, K.: Investigation of copper lattice structures using a Split Hopkinson Pressure Bar. Proceedings of Applied Mathematics and Mechanics, Special Issue: 92nd Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM) 21 (1), e202100155, (2021)
Rehman, U.; Tian, C.; Stein, F.; Best, J. P.; Dehm, G.: Fracture Toughness of the Intermetallic C15 Al2Ca Laves Phase Determined using a Micropillar Splitting Technique. In: Intermetallics 2021, pp. 155 - 156. Intermetallics 2021, Kloster Banz, Bad Staffelstein, Germany, October 04, 2021 - October 08, 2021. (2021)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Micromechanics of Co–Nb Laves Phases: Strength, Fracture Toughness, and Hadrness as Function of Composition and Crystal Structure. In: Joint EPRI – 123HIMAT International Conference on Advances in High-Temperature Materials, 2019, pp. 11 - 21 (Eds. Shingledecker, J.; Takeyama, M.). EPRI's 9th International Conf on Advances in Materials Technology for Fossil Power Plants and the 2nd International 123HiMAT Conf on High-Temperature Materials, Nagasaki, Japan, October 21, 2019 - October 24, 2019. (2019)
Luo, W.; Kirchlechner, C.; Dehm, G.; Stein, F.: Deformation of Micropillars of Cubic and Hexagonal NbCo2 Laves Phases under Uniaxial Compression at Room Temperature. In: Proc. Intermetallics 2017, pp. 199 - 200 (Eds. Heilmaier, M.; Krüger, M.; Mayer, S.; Palm, M.; Stein, F.). Intermetallics 2017, Educational Center Kloster Banz, Bad Staffelstein, Germany, October 02, 2017 - October 06, 2017. Conventus Congressmanagement & Marketing GmbH, Jena, Germany (2017)
Hieke, S. W.; Willinger, M. G.; Wang, Z.-J.; Richter, G.; Dehm, G.; Scheu, C.: In situ electron microscopy – insights in solid state dewetting of epitaxial Al thin films on sapphire. In: Microscopy Conference 2017 (MC 2017) - Proceedings (Ed. Laue, M.). Microscopy Conference 2017 (MC 2017), Lausanne, Switzerland, August 21, 2017 - August 25, 2017. Universität Regensburg, Regensburg (2017)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.