Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjanto, D. D.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, Pensacola, FL, USA, May 17, 2011 - May 19, 2011. IUTAM Symposium on Linking Scales in Computations: From Microstructure to Macro-scale Properties, (2012)
Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Roters, F.: Using the DAMASK suite to study micromechanics and crystal plasticity of heterogeneous materials. Plasticity ’14: The 20th International Symposium on Plasticity & Its Current Applications, Nassau, Bahamas, USA (2014)
Kords, C.; Eisenlohr, P.; Roters, F.: On a proper account of plastic size effects in continuum models including the flux of dislocation density. TMS 2014, 143rd Annual Meeting & Exibition, San Diego, CA, USA (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in single- crystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. 11th World Congress on Computational Mechanics (WCCM XI) and 5th European Conference on Computational Mechanics (ECCM V)
, Barcelona, Spain (2014)
Roters, F.; Kords, C.; Eisenlohr, P.; Raabe, D.: Dislocation density distribution around an wedge indent in singlecrystalline nickel: Comparing non-local crystal plasticity finite element predictions with experiments. EMMC-14, 14th European Mechanics of Materials Conference
, Gothenburg, Sweden (2014)
Roters, F.; Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Raabe, D.: The general crystal plasticity framework 'DAMASK'. Institutsseminar, Institute of Materials Simulation, Department of Materials Science, University of Erlangen-Nürnberg, Fürth, Germany (2013)
Kords, C.; Eisenlohr, P.; Roters, F.: What contributes to the dislocation network stress driving continuum dislocation dynamics? Kolloquium der Forschergruppe 1650, Bad Herrenalb, Germany (2013)
Roters, F.; Eisenlohr, P.; Diehl, M.; Kords, C.; Raabe, D.: The general crystal plasticity framework DAMASK. Colloquium Materials Modelling / Werkstoffkunde und Festigkeitslehre at Institut für Materialprüfung, Stuttgart, Germany (2012)
Kords, C.; Eisenlohr, P.; Roters, F.: A nonlocal crystal plasticity model used to solve heterogeneous boundary value problems for 3D microstructures. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Roters, F.; Eisenlohr, P.; Tjahjanto, D. D.; Kords, C.; Diehl, M.; Raabe, D.: DAMASK: The Düsseldorf Advanced Material Simulation Kit for studying crystal plasticity using FEM and FFT based numerical solvers. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. Euromat 2011, Montpellier, France (2011)
Kords, C.; Jäpel, T.; Eisenlohr, P.; Roters, F.: Residual stress prediction by considering dislocation density advection in 3D applied to single-crystal bending. 2nd International Conference on Material Modelling ICMM 2, Paris, France (2011)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
ECCI is an imaging technique in scanning electron microscopy based on electron channelling applying a backscatter electron detector. It is used for direct observation of lattice defects, for example dislocations or stacking faults, close to the surface of bulk samples.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Developing and providing accurate simulation techniques to explore and predict structural properties and chemical reactions at electrified surfaces and interfaces is critical to surmount materials-related challenges in the context of sustainability, energy conversion and storage. The groups of C. Freysoldt, M. Todorova and S. Wippermann develop…
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…