Herbig, M.; Raabe, D.; Li, Y.; Choi, P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative TEM and APT. TMS 2014, Solid-State Interfaces III Symposium, San Diego, CA, USA (2014)
Herbig, M.; Choi, P.-P.; Raabe, D.: Atom Probe Tomography and Correlative TEM/APT at the MPIE. Mini-Symposium Atom Probe Tomography, National APT Facility Eindhoven, TU Delft, Delft, The Netherlands (2014)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: High Throughput Quantification of Grain Boundary Segregation by Correlative Transmission Electron Microscopy and Atom Probe Tomography. International Conference on Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Choi, P.: Characterization of κ-carbide precipitates in austenitic Fe–Mn–Al–C steels using atom probe tomography. Thermec 2013, Las Vegas, NV, USA (2013)
Herbig, M.; Raabe, D.; Li, Y. J.; Choi, P.; Zaefferer, S.; Goto, S.: Quantification of Grain Boundary Segregation in Nanocrystalline Material. Seminar at Department Microstructure Physics and Alloy Design, MPI für Eisenforschung, Düsseldorf, Germany (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. European Atom Probe Workshop 2013 at ETH Zürich, Zürich, Switzerland (2013)
Herbig, M.; Choi, P.; Raabe, D.: Combining Structural and Chemical Information on the nm Scale by Correlative TEM and APT Characterization. Euromat 2013, Sevilla, Spain (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Project C3 of the SFB/TR103 investigates high-temperature dislocation-dislocation and dislocation-precipitate interactions in the gamma/gamma-prime microstructure of Ni-base superalloys.