Kuzmina, M.; Herbig, M.; Ponge, D.; Choi, P.-P.; Stoffers, A.; Sandlöbes, S.; Raabe, D.: Segregation engineering enables nanostructured dual-phase laminates via solute decoration and phase transformation at lattice defects. Colloquium lecture at Department of Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands (2015)
Herbig, M.; Raabe, D.; Li, Y.; Choi, P.-P.; Zaefferer, S.; Goto, S.: Joint crystallographic and chemical characterization at the nanometer scale by correlative TEM and atom probe tomography. Workshop: White-etching layers in ball and roller bearings, Informatik-Zentrum Hörn, Aachen, Germany (2014)
Choi, P.-P.: Characterization of Ni- and Co-based superalloys using Atom Probe Tomography. International Workshop on Modelling and Simulation of Superalloys, Bochum, Germany (2014)
Jägle, E. A.; Tytko, D.; Choi, P.-P.; Raabe, D.: Deformation-induced intermixing in a model multilayer system. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Li, Y.; Ponge, D.; Choi, P.-P.; Raabe, D.: Segregation of boron at prior austenite grain boundaries in a quenched steel studied by atom probe tomography. Atom Probe Tomography & Microscopy 2014, Stuttgart, Germany (2014)
Herbig, M.; Li, Y.; Morsdorf, L.; Goto, S.; Choi, P.-P.; Kirchheim, R.; Raabe, D.: Recent Advances in Understanding the Structures and Properties of Nanomaterials. Gordon Research Conference on Structural Nanomaterials, The Chinese University of Hong Kong, Hong Kong, China (2014)
Herbig, M.; Choi, P.; Raabe, D.: Atom Probe Tomography and Correlative TEM/APT at the MPIE. Inauguration of the Atom Probe at the Institute for Physics IA at the RWTH Aachen, Aachen, Germany (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…