Biedermann, P. U.; Flechtner, K.-D.: Towards a Thermodynamic Theory of Electrochemical Reactions in Aqueous Media. A DFT Study of the Intermediates of Oxygen Reduction. 46th Symposium on Theoretical Chemistry, STC2010, Münster, Germany (2010)
Biedermann, P. U.; Flechtner, K.-D.: Theoretical Insights into the Mechanism of the Oxygen Reduction Reaction. Electrochemistry 2010, Ruhr-Universität Bochum, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Spectroscopic Investigation of the Oxygen Reduction Reaction (ORR) on Semiconductor Surfaces. Electrochemistry 2010 - From microscopic understanding to global impact, Bochum, Germany (2010)
Nayak, S.; Biedermann, P. U.; Erbe, A.: Electrochemical oxygen reduction on semiconductor electrodes. 109th Annual meeting of the German Bunsen Society of Physical Chemistry (Bunsentagung), Bielefeld, Germany (2010)
Hamou, R. F.; Biedermann, P. U.; Rohwerder, M.; Blumenau, A. T.: FEM Simulation of the Scanning Electrochemical Potential Microscopy (SECPM). 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Torres, E.; Biedermann, P. U.; Blumenau, A. T.: A DFT study of Alkanethiol adsorption sites on Au(111) surfaces. 2nd IMPRS-SurMat Workshop in Surface and Interface Engineering in Advanced Materials, Ruhr-Universität Bochum, Bochum, Germany (2008)
Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…