Pyzalla, A.: Werkstoffcharakterisierung durch Diffraktion und Tomographie mit Synchrotron-Röntgenstrahlung und Neutronen. Symposium Hochleistungskeramik 2008, TU Hamburg-Harbung (2008)
Pyzalla, A. R.: In-situ Characterization of Damage Processes using Synchrotron Radiation. International Conference "Advanced Processing for Novel Functional Materials", Dresden, Germany (2008)
Pyzalla, A. R.; Isaac, A.; Sket, F.; Dzieciol, K.; Sauthoff, G.; Borbély, A.: In-situ Characterisation of Creep Damage Evolution in Metallic Materials using Synchrotron Tomography. Symposium "Microstructural Characterisation down to the Atomic Scale", Leoben / Österreich (2007)
Coelho, R. S.; Kostka, A.; Sheikhi, S.; dos Santos, J.; Pyzalla, A. R.: Friction Stir Welding of ZStE340 High-strength Steel and AA6181-T4 Aluminium Alloy. SOLVSTIR - International Seminar on Friction Stir Welding of Steels, Geesthacht (2007)
Pinto, H.; Juricic, C.; Genzel, C.; Pyzalla, A. R.: Effect of substrate microstructure on phase, texture and internal stress evolution in iron oxide layers grown at 650 °C. Zeit- und temperaturaufgelöste Röntgen-Pulver-Diffraktometrie VIII, Fraunhofer ICT, Pfinztal, Germany (2007)
Sket, F.; Isaac, A.; Dzieciol, K.; Pyzalla, A. R.: Caracterizacion in-situ en 3D de Danos durante creep usando XMT. Seminario de Ciencias de Mateariales, Huelva, Spain (2007)
Brito, P.; Pinto, H.; Pyzalla, A. R.; Spiegel, M.: Phase composition and internal stress development during the oxidation of iron aluminides. Final Conference COST Action 535 Thermodynamics of Alloyed Aluminides (THALU) and 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, Interlaken, Switzerland (2007)
Juricic, C.; Pinto, H.; Pyzalla, A. R.: In-situ phase analysis and stress evolution in iron oxides on iron poly and single crystals. Size-Strain V, Garmisch-Partenkirchen (2007)
Agudo, L.; Pinto, H.; Kostka, A.; Weber, S.; Wagner, J.; Arenholz, E.; Bruckner, J.; Pyzalla, A. R.: Study of Microstructure and Residual Stresses in Dissimilar Al/Steel Welds Produced by Cold Metal Transfer. MECASENS IV, Wien (2007)
Barbatti, C.; Pinto, H.; di Prinzio, A.; Staia, M.; Pitonak, R.; Garcia, J.; Pyzalla, A. R.: Influence of Microblasting on the Microstructure and Residual Stresses of CVD k-AlO3 Coated Hardmetals. MECASENS, Wien (2007)
Coelho, R. S.; Kostka, A.; Riekehr, S.; Kocak, M.; Pyzalla, A. R.: Microstructure and residual stress of Nd:YAG laser AZ31B butt welds. MECASENS IV, Wien, Austria (2007)
Juricic, C.; Pinto, H.; Genzel, C.; Pyzalla, A. R.: Effect of substrate orientation on the phase and internal stress evolution in iron oxide layers. MECASENS IV, Wien, Austria (2007)
Agudo, L.; Kostka, A.; Weber, S.; Wagner, J.; Arenholz, E.; Bruckner, J.; Pyzalla, A. R.: Al/Steel welds: Fundamental investigation of intermetallic phases. 4th Discussion Meeting on the Development of Innovative Iron Aluminium Alloys, FeAl2007, Interlaken, Switzerland (2007)
Pyzalla, A. R.: Residual stresses in engineering materials. VI-PNAM Autumn School: Application of Neutrons and Synchrotron Radiation in Engineering Materials Science, Hamburg (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…