Roters, F.; Eisenlohr, P.; Diehl, M.; Shanthraj, P.; Kords, C.; Raabe, D.: The general crystal plasticity framework 'DAMASK'. Institutsseminar, Institute of Materials Simulation, Department of Materials Science, University of Erlangen-Nürnberg, Fürth, Germany (2013)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Advanced spectral methods to study mechanics of heterogeneous materials. SPP1420 PhD and PostDoc workshop, Darmstadt, Germany (2013)
Kords, C.; Eisenlohr, P.; Roters, F.: What contributes to the dislocation network stress driving continuum dislocation dynamics? Kolloquium der Forschergruppe 1650, Bad Herrenalb, Germany (2013)
Roters, F.; Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Raabe, D.: A spectral method solution to crystal elasto-viscoplasticity at finite strains. "Textures, Microstructures and Plastic Anisotropy, a Tribute to Paul Van Houtte", KU Leuven, Belgium (2013)
Roters, F.; Diehl, M.; Shanthraj, P.; Lebensohn, R. A.; Eisenlohr, P.: A spectral method solution to crystal elastoviscoplasticity at finite strains. Plasticity ’13, The 19th International Symposium on Plasticity & Its Current Applications, Nassau, Bahamas (2013)
Liu, B.; Raabe, D.; Roters, F.: Discrete Dislocation Dynamics Simulation of High Temperature Creep in Nickel-based Single Crystal Superalloys. MMM2012, 6th International Conference on Multiscale Materials Modeling, Singapore City, Singapore (2012)
Liu, B.; Raabe, D.; Roters, F.: A dislocation dynamics study of dislocation cell formation and interaction between a low angle grain boundary and in-coming dislocations. 1st PRACE (Partnership for Advanced computing in Europe) Scientific Conference, Hamburg, Germany (2012)
Roters, F.; Eisenlohr, P.; Diehl, M.; Kords, C.; Raabe, D.: The general crystal plasticity framework DAMASK. Colloquium Materials Modelling / Werkstoffkunde und Festigkeitslehre at Institut für Materialprüfung, Stuttgart, Germany (2012)
Kords, C.; Eisenlohr, P.; Roters, F.: A nonlocal crystal plasticity model used to solve heterogeneous boundary value problems for 3D microstructures. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Liu, B.; Raabe, D.; Eisenlohr, P.; Roters, F.: Dislocation-hexagonal dislocation network interaction in BCC metals. 18th International Symposium on Plasticity & Its Current Applications, San Juan, Puerto Rico (2012)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…