Merzlikin, S. V.; Vogel, A.; Auinger, M.; Vogel, D.; Rohwerder, M.: Suppressing the selective oxidation during the recrystallization annealing of steel band for improved hot dip galvanizing: Laboratory study. ISHOC2014 - International Symposium on High-temperature Oxidation and Corrosion 2014, Hakodate, Hokkaido Japan (2014)
Vogel, D.; Borodin, S.; Merzlikin, S. V.; Keil, P.; Rohwerder, M.: Near Ambient Pressure XPS studies on the oxide formation on Fe–2Mn during thermal treatment. ISHOC2014 - International Symposium on High-temperature Oxidation and Corrosion 2014, Hakodate, Hokkaido Japan (2014)
Merzlikin, S. V.; Bashir, A.; Evers, S.; Senöz, C.; Rohwerder, M.: Using Scanning Kelvin Probe Force Microscopy and Thermal Desorption for Localized Hydrogen Detection and Quantification in Steels. 2nd International Conference on hydrogen in Steels, Gent, Belgium (2014)
Merzlikin, S. V.; Bashir, A.; Rohwerder, M.: Hydrogen embrittlement and traps structure of advanced high strength sheet steel for automotive applications. ICH2P-2014, International Conference on Hydrogen Production, Fukuoka, Japan. (2014)
Rohwerder, M.: Scanning Kelvin Probe Force Microscopy as Tool for the Investigation of Localized Corrosion. 2014 ECS and SMEQ Joint Internat. Meeting, Cancun, Mexico (2014)
Rohwerder, M.: Self-Healing Coatings for Corrosion Protection: A Critical Overview and Latest Results. Gordon Reserach Conference on Aqueous Corrosion , New London, AR, USA (2014)
Rohwerder, M.: Korrosionsschutz mit leitfähigen Polymeren: Entwicklung selbstheilender Beschichtungen. Materials Valley Workshop, Hanau, Germany (2014)
Rohwerder, M.: Zinc alloy coatings for corrosion protection: From the basics to new challenges. MSE Colloquium, The Ohio State University, Columbus, Columbus, OH, USA (2014)
Rohwerder, M.: A new technique for high-sensitive and spatially resolved detection of hydrogen and its application in corrosion science steel. Hydrogen Embrittlement Workshop, Düsseldorf, Germany (2014)
Rohwerder, M.; Borodin, S.; Vogel, A.; Vogel, D.: Investigation of the Fundamental Processes in the Internal Oxidation of Binary and Ternary Iron Based Alloys at Elevated Temperatures. 2014 ECS and SMEQ Joint Internat. Meeting, Cancun, Mexico (2014)
Altin, A.; Erbe, A.; Ritter, H.; Rohwerder, M.: Controlled release of inhibitors from composite organic coatings: A “green” way of corrosion protection. EUROCORR 2013, Estoril, Portugal (2013)
Vimalanandan, A.; Lv, L. P.; Zhao, Y.; Landfester, K.; Crespy, D.; Rohwerder, M.: Active corrosion protection coatings based on potential triggered release systems. EUROCORR 2013, the European Corrosion Congress, “For a blue sky”, Estoril, Portugal (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…