Warden, G. K.; Ebbinghaus, P.; Rabe, M.; Juel, M.; Gaweł, B. A.; Erbe, A.; Di Sabatino, M.: Investigation of uniformity in fused quartz crucibles for Czochralski silicon ingots. Journal of Crystal Growth 645, 127844 (2024)
Richter, R. A.; Tolstik, N.; Rigaud, S.; Dalla Valle, P.; Erbe, A.; Ebbinghaus, P.; Astrauskas, I.; Kalashnikov, V.; Sorokin, E.; Sorokina, I. T.: Sub-surface modifications in silicon with ultra-short pulsed lasers above 2 µm. Journal of the Optical Society of America B-Optical Physics 37 (9), pp. 2543 - 2556 (2020)
Folger, A.; Ebbinghaus, P.; Erbe, A.; Scheu, C.: Role of Vacancy Condensation in the Formation of Voids in Rutile TiO2 Nanowires. ACS Applied Materials and Interfaces 9 (15), pp. 13471 - 13479 (2017)
Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Auinger, M.; Ebbinghaus, P.; Blümich, A.; Erbe, A.: Effect of surface roughness on optical heating of metals. Journal of the European Optical Society Rapid Publications 9, pp. 14004-1 - 14004-13 (2014)
Sun, Z.; Xie, K.; Li, Z. A.; Sinev, I.; Ebbinghaus, P.; Erbe, A.; Farle, M.; Schuhmann, W.; Muhler, M.; Ventosa, E.: Hollow and Yolk-Shell Iron Oxide Nanostructures on Few-Layer Graphene in Li-Ion Batteries. Chemistry  A European Journal 20, pp. 2022 - 2030 (2014)
Yliniemi, K.; Ebbinghaus, P.; Keil, P.; Kontturi, K.; Grundmeier, G.: Chemical composition and barrier properties of Ag nanoparticle-containing sol-gel films in oxidizing and reducing low-temperature plasmas. Surface & Coatings Technology 201 (18), pp. 7865 - 7872 (2007)
Grundmeier, G.; Rossenbeck, B.; Roschmann, K. J.; Ebbinghaus, P.; Stratmann, M.: Corrosion Protection of Zn-Phosphate Containing Water Borne Dispersion Coatings on Steel. Part 2: Corrosive de-adhesion of model films on iron substrates. Corrosion Science 48 (11), pp. 3716 - 3730 (2006)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.