Huang, S.; Tegg, L.; Yamini, S. A.; Tuli, V.; Burr, P.; McCarroll, I.; Yang, L.; Moore, K. L.; Cairney, J. M.: Atom probe study of second-phase particles in Zircaloy-4. Journal of Nuclear Materials 616, 156049 (2025)
Huang, S.; Tegg, L.; Yamini, S. A.; Chen, L.; Burr, P.; Qu, J.; Yang, L.; Mccarroll, I.; Cairney, J. M.: Atomic distribution of alloying elements and second phase particles (SPPs) identification in Optimised ZIRLO. Acta Materialia 297, 121365 (2025)
Kubásek, J.; Torkornoo, S.; Nečas, D.; McCarroll, I.; Hybášek, V.; Gault, B.; Jablonská, E.; Donik, Č.; Paulin, I.; Gogola, P.et al.; Kusý, M.; Míchal, Z.; Fojt, J.; Čavojský, M.; Duchoň, J.; Jarošová, M.; Čapek, J.: Towards increased strength and retained ductility of Zn-Mg-(Ag) materials for medical devices by adopting powder metallurgy processing routes. Journal of Materials Research and Technology 37, pp. 4345 - 4361 (2025)
Schwarz, T.; Birbilis, N.; Gault, B.; McCarroll, I.: Understanding the Al diffusion pathway during atmospheric corrosion of a Mg-Al alloy using atom probe tomography. Corrosion Science 252, 112951 (2025)
Yang, L.; Chen, E. Y.-S.; Qu, J.; Garbrecht, M.; McCarroll, I.; Mosiman, D. S.; Saha, B.; Cairney, J. M.: Improved atom probe specimen preparation by focused ion beam with the aid of multi-dimensional specimen control. Microstructures 5 (1), 2025007 (2025)
Torkornoo, S.; Bohner, M.; McCarroll, I.; Gault, B.: Optimization of Parameters for Atom Probe Tomography Analysis of β-Tricalcium Phosphates. Microscopy and Microanalysis 30 (6), pp. 1074 - 1082 (2024)
Schwarz, T.; Yu, W.; Zhan, H.; Gault, B.; Gourlay, C.; McCarroll, I.: Uncovering Ce-rich clusters and their role in precipitation strengthening of an AE44 alloy. Scripta Materialia 232, 115498 (2023)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.