Gambino, D.; Alling, B.: Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles. Physical Review B 98 (6), 064105 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: Structural models of increasing complexity for icosahedral boron carbide with compositions throughout the single-phase region from first principles. Physical Review B 97 (17), 174104 (2018)
Gharavi, M.; Armiento, R.; Alling, B.; Eklund, P.: Theoretical study of phase stability, crystal and electronic structure of MeMgN2 (Me = Ti, Zr, Hf) compounds. Journal of Materials Science: Materials in Electronics 53 (6), pp. 4294 - 4305 (2018)
Mozafari, E.; Alling, B.; Belov, M. P.; Abrikosov, I. A.: Effect of the lattice dynamics on the electronic structure of paramagnetic NiO within the disordered local moment picture. Physical Review B 97 (3), 035152 (2018)
Ektarawong, A.; Simak, S. I.; Alling, B.: First-principles prediction of stabilities and instabilities of compounds and alloys in the ternary B-As-P system. Physical Review B 96 (2), 024202 (2017)
Ektarawong, A.; Simak, S. I.; Alling, B.: Thermodynamic stability and properties of boron subnitrides from first principles. Physical Review B 95 (6), 064206 (2017)
Mozafari, E.; Shulumba, N.; Steneteg, P.; Alling, B.; Abrikosov, I. A.: Finite-temperature elastic constants of paramagnetic materials within the disordered local moment picture from ab initio molecular dynamics calculations. Physical Review B 94 (5), 054111 (2016)
Ektarawong, A.; Simak, S. I.; Alling, B.: Carbon-rich icosahedral boron carbides beyond B4 C and their thermodynamic stabilities at high temperature and pressure from first principles. Physical Review B 94 (5), 054104 (2016)
Olovsson, W.; Alling, B.; Magnuson, M.: Structure and Bonding in Amorphous Cr1-xCx Nanocomposite Thin Films: X-ray Absorption Spectra and First-Principles Calculations. The Journal of Physical Chemistry C 120 (23), pp. 12890 - 12899 (2016)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.