Rohwerder, M.; Isik-Uppenkamp, S.; Chellachamy Anbalagan, A.: Application of the Kelvin probe method for screening the interfacial reactivity of conducting polymer based coatings for corrosion protection. Electrochimica Acta 56 (4), pp. 1889 - 1893 (2011)
Rohwerder, M.; Isik-Uppenkamp, S.; Stratmann, M.: Application of SKP for in situ monitoring of ion mobility along insulator/insulator interfaces. Electrochimica Acta 54 (25), pp. 6058 - 6062 (2009)
Borissov, D.; Isik-Uppenkamp, S.; Rohwerder, M.: Fabrication of iron nanowire arrays by electrodeposition into porous alumina. The Journal of Physical Chemistry C 113 (8), pp. 3133 - 3138 (2009)
Isik-Uppenkamp, S.; Laaboudi, A.; Rohwerder, M.: Delamination of Polymer/Metal Interfaces: On the Correlation of Kinetics and Interfacial Structure. 212th ECS Meeting, Washington, D.C., USA (2007)
Laaboudi, A.; Isik-Uppenkamp, S.; Rohwerder, M.: Modelling cathodic delamination: Oxygen reduction and interface degradation at a molecularly well defined coating/metal interface. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flagey, Belgium (2007)
Isik-Uppenkamp, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe Microscopy for characterisation of iron mobility at buried interfaces. ECASIA 2007, 12th European Conference on Applications of Surface and Interface Analysis, Brussels-Flggey, Belgium (2007)
Biedermann, P. U.; Torres, E.; Laaboudi, L.; Isik-Uppenkamp, S.; Rohwerder, M.; Blumenau, A. T.: Cathodic Delamination by a Combined Computational and Experimental Approach: The Aklylthiol/Gold Model System. Multiscale Material Modeling of Condensed Matter, MMM2007, St. Feliu de Guixols, Spain (2007)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.