Lill, K. A.; Fushimi, K.; Seo, M.; Hassel, A. W.: Reactivity imaging of a passive ferritic FeAlCr steel. J Appl Electrochem. 38, pp. 1339 - 1345 (2008)
Fushimi, K.; Stratmann, M.; Hassel, A. W.: Electropolishing of NiTi shape memory alloys in methanolic H2SO4. Electrochim. Acta 52, pp. 1290 - 1295 (2006)
Hassel, A. W.; Lill, K. A.; Fushimi, K.; Seo, M.: Microelectrochemical Investigations of the Corrosion Behaviour of Ferritic FeAlCr Steels. In: Japan Society for Corrosion Engineering Materials and Environments. 2007 Spring Meeting of the Japan Society for Corrosion Engineering Materials and Environments, Tokyo, Japan, May 09, 2007 - May 11, 2007. (2007)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Passive Film Formed on Shape Memory NiTi-Alloy in Sulfuric Acid. In: Proceed. Asian Pacific Corr. Contr. Conf. 13, pp. L06 1 - L06 8. (2003)
Hassel, A. W.; Fushimi, K.; Okawa, T.; Seo, M.: Local Analysis of Anodic Oxide Films on Titanium by Scanning Droplet Cell and Scanning Electrochemical Microscope. Localized In Situ Methods for Investigating Electrochemical Interfaces. Electrochem. Soc. Proc. PV 99-28, pp. 166 - 174 (1999)
Neelakantan, L.; Fushimi, K.; Eggeler, G.; Hassel, A. W.: Electropolishing and Electrochemical Micromachining of NiTi. SMST 2007 (The Int. Conf. on Shape Memory and Superelastic Technol.), Tsukuba, Japan (2007)
Fushimi, K.; Lill, K. A.; Hassel, A. W.; Seo, M.: The difference in reaction rate on single grains and grain boundaries observed by scanning electrochemical microscopy. 2006 Annual Meeting of Japanese Society of Corrosion Engineering, Akita, Japan (2006)
Lill, K. A.; Fushimi, K.; Hassel, A. W.; Seo, M.: The Kinetics of Single Grains and Grain Boundaries by SECM. 4th Workshop on Scanning Electrochemical Microscopy (SECM), Falcade, Italy (2006)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Passive Film Formed on Shape Memory NiTi-Alloy in Sulfuric Acid. 13th Asian Pacific Corrosion Control Conference, Osaka, Japan (2003)
Hassel, A. W.; Fushimi, K.; Stratmann, M.: Elektropolieren und Anodisieren von Nitinol. Institutsseminar des Lehrstuhls für Werkstoffe Ruhr-Universität Bochum Prof. Pohl, Bochum, Germany (2003)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Study on Electropolishing Behavior of Shape Memory NiTi-Alloy. 108th Meeting of The Surface Finishing Society of Japan, Utsunomiya, Japan (2003)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Anodic Polarization Behavior of Shape Memory NiTi-Alloy in H2SO4 Aqueous Solution. The Meeting of The Electrochemical Society of Japan 2003, Sapporo, Japan (2003)
Hassel, A. W.; Fushimi, K.; Stratmann, M.; Seo, M.: Controlling Film Properties in Microstructures on Single Grains of Titanium; A SDC, SECM and Imaging Ellipsometry Study. 54rd Annual Meeting of the International Society of Electrochemistry, Sao Pedro, Brazil (2003)
Fushimi, K.; Hassel, A. W.; Stratmann, M.: Anodic Oxide Film on Shape Memory NiTi Alloy. 203rd Meeting of The Electrochemical Society, Paris, France (2003)
Hassel, A. W.; Fushimi, K.; Okawa, T.; Seo, M.: Local Analysis of Anodic Oxide Films on Titanium by Scanning Droplet Cell and Scanning Electrochemical Microscope. 196th Meeting of The Electrochemical Society jointly with 1999 Fall Meeting of The Electrochemical Society of Japan, Honolulu, HI, USA (1999)
Lill, K. A.; Fushimi, K.; Hassel, A. W.; Seo, M.: Investigations on the kinetics of single grains and grain boundaries by use of Scan-ning Electrochemical Microscopy (SECM). 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Neelakantan, L.; Georgiou, M.; Fushimi, K.; Eggeler, G.; Hassel, A. W.: Investigation on the Solubility of Nickel and Titanium in Methanolic Sulphuric Acid Solution during Electropolishing of NiTi. GDCh, Jahrestagung 2005, Fachgruppe Angewandte Elektrochemie, Düsseldorf, Germany (2005)
Neelakantan, L.; Georgiou, M.; Stratmann, M.; Hassel, A. W.; Fushimi, K.: On the mechanism of electropolishing of NiTi shape memory alloys. 79. AGEF Seminar - 25 Jahre Elektrochemie in Düsseldorf, Düsseldorf, Germany (2004)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen.
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The project aims to study corrosion, a detrimental process with an enormous impact on global economy, by combining denstiy-functional theory calculations with thermodynamic concepts.
Understanding hydrogen-assisted embrittlement of advanced structural materials is essential for enabling future hydrogen-based energy industries. A crucially important phenomenon in this context is the delayed fracture in high-strength structural materials. Factors affecting the hydrogen embrittlement are the hydrogen content,...
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding…