Senöz, C.; Evers, S.; Stratmann, M.; Rohwerder, M.: Scanning Kelvin Probe as a highly sensitive tool for detecting hydrogen permeation with high local resolution. Electrochemistry Communucations 13 (12), pp. 1542 - 1545 (2011)
Leng, A.; Streckel, H.; Stratmann, M.: Corrigendum to ‘‘The delamination of polymeric coatings from steel. Part 2: First stage of delamination, effect of type and concentration of cations on delamination, chemical analysis of the interface’’ [Corros. Sci. 41 (1998) 579–597]. Corrosion Science 53 (10), p. 3455 - 3455 (2011)
Frenznick, S.; Swaminathan, S.; Stratmann, M.; Rohwerder, M.: A novel approach to determine high temperature wettability and interfacial reactions in liquid metal/solid interface. Bulletin of Materials Science 45 (8), pp. 2106 - 2111 (2010)
Rohwerder, M.; Isik-Uppenkamp, S.; Stratmann, M.: Application of SKP for in situ monitoring of ion mobility along insulator/insulator interfaces. Electrochimica Acta 54 (25), pp. 6058 - 6062 (2009)
Posner, R.; Titz, T.; Wapner, K.; Stratmann, M.; Grundmeier, G.: Transport processes of hydrated ions at polymer/oxide/metal interfaces. Part 2: Transport on oxide covered iron and zinc surfaces. Electrochimica Acta 54 (33), pp. 900 - 908 (2009)
Posner, R.; Wapner, K.; Stratmann, M.; Grundmeier, G.: Transport processes of hydrated ions on oxide covered iron and zinc surfaces and interfaces. Part 1: Transport at polymer/oxide/metal interfaces. Electrochimica Acta 54 (3), pp. 891 - 899 (2009)
Frenznick, S.; Stratmann, M.; Rohwerder, M.: A new advanced experimental setup for in-depth study of the interfacial reaction during reactive wetting. Review of Scientific Instruments 79 (4), 043901 (2008)
Eckhard, K.; Erichsen, T.; Stratmann, M.; Schuhmann, W.: Frequency-Dependent Alternating-Current Scanning Electrochemical Microscopy (4D AC-SECM) for Local Visualisation of Corrosion Sites. Chemistry – A European Journal 14 (13), pp. 3968 - 3976 (2008)
Hausbrand, R.; Stratmann, M.; Rohwerder, M.: The physical meaning of electrode potentials at metal surfaces and polymer/metal interfaces: Consequences for delamination. Journal of the Electrochemical Society 155 (7), pp. C369 - C379 (2008)
Wapner, K.; Stratmann, M.; Grundmeier, G.: Structure and stability of adhesion promoting aminopropyl phosphonate layers at polymer/aluminium oxide interface. International Journal of Adhesion and Adhesives 28 (1-2), pp. 59 - 70 (2008)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Oxidation and corrosion of noble metals is a fundamental problem of crucial importance in the advancement of the long-term renewable energy concept strategy. In our group we use state-of-the-art electrochemical scanning flow cell (SFC) coupled with inductively coupled plasma mass spectrometer (ICP-MS) setup to address the problem.
For understanding the underlying hydrogen embrittlement mechanism in transformation-induced plasticity steels, the process of damage evolution in a model austenite/martensite dual-phase microstructure following hydrogenation was investigated through multi-scale electron channelling contrast imaging and in situ optical microscopy.
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Hydrogen induced embrittlement of metals is one of the long standing unresolved problems in Materials Science. A hierarchical multiscale approach is used to investigate the underlying atomistic mechanisms.