Auinger, M.: High Temperature Corrosion in Low Activity Gases - Theoretical Calculations and Experimental Comparison of Oxide, Nitride and Carbide Formation. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Auinger, M.: Phase Diagrams with FACTSage - Speaking different Languages for Thermochemical Properties. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2013)
Auinger, M.: Internal oxidation and nitridation of hot rolled steels - A theoretical study and its experimental verification. Gunnar Eriksson Symposium & GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Germany (2012)
Auinger, M.: What do we know about internal oxidation in hot-rolled steels? - A theoretical study and its experimental verification. Seminar Talk at Interdisciplinary Center for Advanced materials Simulation (ICAMS), Ruhr-Universtät Bochum, Bochum, Germany (2012)
Auinger, M.: Experimental studies and theoretical calculations on the formation of nitrides and oxides during selective oxidation in binary iron-alloys. 8th International Symposium on High-Temperature Corrosion and Protection of Materials, Les Embiez, France (2012)
Auinger, M.: Applied Simulations of Thermodynamic Reactions and Interphase Diffusion (ASTRID): Vorstellung des Konzepts und Beispiele zur Korngrenzenoxidation. CDL-Workshop Strukturmodellierung in technischen Metallen, Rust, Austria (2012)
Auinger, M.: Theory and Experiment for High Temperature Metal-Gas Reactions. Seminar Talk at Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA (2011)
Auinger, M.; Rohwerder, M.: Connecting Thermochemical Reactions and Diffusion - The Formation of Grain Boundary Oxides in Steel Sheets. 18th Conference on Computer Methods in Materials Technology, Zakopane, Poland (2011)
Evers, S.; Borodin, S.; Auinger, M.; Rohwerder, M.: Understanding of Hydrogen in Steel by Scanning Kelvin Probe measurements on evaporated Pd-Films. 7th International Conference on Diffusion in Solids and Liquids (DSL 2011), Algarve, Portugal (2011)
Auinger, M.: Coupling Thermodynamics and Diffusion for describing Metal/Gas Reactions at elevated Temperatures. Lecture at Institute for Materials Research, Tohoku University, Sendai, Japan (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. Division of Materials and Manufacturing Science, Osaka University, Osaka, Japan (2010)
Auinger, M.; Borodin, S.; Evers, S.; Rohwerder, M.: Thermodynamic Studies of Hydrogen Permeation and the Effect of Oxide Formation in Pure Iron Samples. 6th International Conference on Diffusion in Solids and Liquids, Paris, France (2010)
Auinger, M.; Rohwerder, M.: Grain Boundary Oxidation Processes and High Temperature Corrosion. GTT-Workshop on Thermodynamic Simulations in Industry, Herzogenrath, Aachen, Germany (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Simulations of the Oxidation Processes in Polycrystalline Metallic Alloys. International Workshop “Grain boundary diffusion, stresses and segregation”, Moscow, Russia (2010)
Auinger, M.; Borodin, S.; Swaminathan, S.; Rohwerder, M.: Thermodynamic Stability and Reaction Sequence for High Temperature Oxidation Processes in Steels. International Symposium “High Temperature Oxidation and Corrosion”, Zushi (Tokyo), Japan (2010)
Auinger, M.; Vogel, A.; Rohwerder, M.: High Temperature Corrosion in low-activity gases - Theoretical Calculations and Experimental Comparison of Oxide, Nitride and Carbide Formation. Gordon Research Seminar on High Temperature Corrosion, New London, CT, USA (2013)
Hydrogen in aluminium can cause embrittlement and critical failure. However, the behaviour of hydrogen in aluminium was not yet understood. Scientists at the Max-Planck-Institut für Eisenforschung were able to locate hydrogen inside aluminium’s microstructure and designed strategies to trap the hydrogen atoms inside the microstructure. This can…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project we investigate the hydrogen distribution and desorption behavior in an electrochemically hydrogen-charged binary Ni-Nb model alloy. The aim is to study the role of the delta phase in hydrogen embrittlement of the Ni-base alloy 718.
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
Microbiologically influenced corrosion (MIC) of iron by marine sulfate reducing bacteria (SRB) is studied electrochemically and surfaces of corroded samples have been investigated in a long-term project.