In this project, we work on a generic solution to design advanced high-entropy alloys (HEAs) with enhanced magnetic properties. By overturning the concept of stabilizing solid solutions in HEAs, we propose to render the massive solid solutions metastable and trigger spinodal decomposition. The motivation for starting from the HEA for this approach is to provide the chemical degrees of freedom required to tailor spinodal behaviour using multiple components.
Magnetic properties of the Fe15Co15Ni20Mn20Cu30 HEA samples in different processing conditions. a, b) Temperature dependence of magnetization of the homogenized a) and 600 oC / 240 h annealed b) HEA samples after zero-field cooling in applied magnetic fields of 50-0.05 T and after a 0.5 T field cooling in an applied magnetic field of 0.01 T. c) Hysteresis loops investigated up to 2 T of the HEA with different annealing time at 300 K. d) Experimental Curie temperatures as a function of annealing time. The morphological evolution of the alloy’s nanostructure as a function of annealing time is shown in terms of APT reconstructions of volume portions with dimensions of 40×40×200 nm3. The APT reconstructions also show 50 at. % iso-composition surfaces of Cu. e) DFT calculated Curie temperatures as a function of annealing time. The blue shaded area indicates the impact of strain induced volume dilatation on the Curie temperature, i.e., the difference between the Curie temperature calculated for a hypothetical free-standing unconstrained single-phase bulk-like Fe-Co alloy and that for the experimentally measured strained volume of the same region in the HEA. For the 6 h and 24 h annealed samples, light blue squares and spheres indicate the Curie temperature values calculated for compositions corresponding to three different APT tips while the final value is the arithmetic mean over the three compositions. The oval shapes for these two annealing times mark the fluctuations in the Curie temperatures that occur due to the scatter in local composition among the different APT specimens.
Magnetic properties of the Fe15Co15Ni20Mn20Cu30 HEA samples in different processing conditions. a, b) Temperature dependence of magnetization of the homogenized a) and 600 oC / 240 h annealed b) HEA samples after zero-field cooling in applied magnetic fields of 50-0.05 T and after a 0.5 T field cooling in an applied magnetic field of 0.01 T. c) Hysteresis loops investigated up to 2 T of the HEA with different annealing time at 300 K. d) Experimental Curie temperatures as a function of annealing time. The morphological evolution of the alloy’s nanostructure as a function of annealing time is shown in terms of APT reconstructions of volume portions with dimensions of 40×40×200 nm3. The APT reconstructions also show 50 at. % iso-composition surfaces of Cu. e) DFT calculated Curie temperatures as a function of annealing time. The blue shaded area indicates the impact of strain induced volume dilatation on the Curie temperature, i.e., the difference between the Curie temperature calculated for a hypothetical free-standing unconstrained single-phase bulk-like Fe-Co alloy and that for the experimentally measured strained volume of the same region in the HEA. For the 6 h and 24 h annealed samples, light blue squares and spheres indicate the Curie temperature values calculated for compositions corresponding to three different APT tips while the final value is the arithmetic mean over the three compositions. The oval shapes for these two annealing times mark the fluctuations in the Curie temperatures that occur due to the scatter in local composition among the different APT specimens.
Since its first emergence in 2004, the HEA concept has aimed at stabilizing single- or dual-phase multi-element solid solutions through high mixing entropy. Here, we change this strategy and render such massive solid solutions metastable, to trigger spinodal decomposition for improving the alloys’ magnetic properties. The motivation for starting from a HEA for this approach is to provide the chemical degrees of freedom required to tailor spinodal behavior using multiple components. The key idea is to form Fe-Co enriched regions which have an expanded volume (relative to unconstrained Fe-Co), due to coherency constraints imposed by the surrounding HEA matrix. As demonstrated by theory and experiments, this leads to improved magnetic properties of the decomposed alloy relative to the original solid solution matrix. In a prototype magnetic FeCoNiMnCu HEA, we show that the modulated structures, achieved by spinodal decomposition, lead to an increase of the Curie temperature by 48% and a simultaneous increase of magnetization by 70% at ambient temperature as compared to the homogenized single-phase reference alloy.
In this project we study a new strategy for the theory-guided bottom up design of beta-Ti alloys for biomedical applications using a quantum mechanical approach in conjunction with experiments. Parameter-free density functional theory calculations are used to provide theoretical guidance in selecting and optimizing Ti-based alloys...
In order to explore the possibility of using high entropy alloys (HEAs) for functional applications such as magnetic refrigeration it is necessary to have an in-depth understanding of their magnetic properties. The main goal of this project is to understand and improve the magnetic properties (e.g., saturation magnetization, Curie temperature etc.) in different medium and HEAs.
Electro-responsive interfaces alter their properties in response to an electric potential trigger. Hence, such 'smart' interfaces offer exciting possibilities for applications in, for instance, microfluidics, separation systems, biosensors and -analytics.
In this project nanoprecipitates are designed via elastic misfit stabilization in Fe–Mn maraging steels by combining transmission electron microscopy (TEM) correlated atom probe tomography (APT) with ab initio simulations. Guided by these predictions, the Al content of the alloys is systematically varied...
Interstitial alloying can improve the mechanical properties of high-entropy alloys (HEAs). In some cases, the interstitial-alloying impact is very different from those in conventional alloys. We investigate the effect of interstitial alloying in fcc CrMnFeCoNi HEA as well as bcc refractory HEAs, particularly focusing on the solution energies and…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…
Future technology challenges will no longer be simply addressed by today's materials and processing solutions, which are often based on trial and error. Instead, guidance will be attained from correlative experimental and theoretical research bridging all length scales.
Within the EU project „ADVANCE - Sophisticated experiments and optimisation to advance an existing CALPHAD database for next generation TiAl alloys”, MPIE collaborated with Thermocalc-Software AB, Stockholm, Montanuniversität Leoben and Helmholtz-Zentrum Hereon, Geesthacht. At MPIE the focus lay on the production and heat treatments of model alloys…