© Max-Planck-Institut für Eisenforschung GmbH

Research Projects

Adaptive remeshing in large-deformation crystal plasticity simulation 
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic deformation in polycrystals. After reaching high local strain levels, it is no longer possible to continue the simulation, because the mesh distortion reduces the accuracy of the results. In this project we introduce two different adaptive remeshing approaches for simulating large deformation of 3D polycrystals with high resolution under periodic boundary conditions.
  more
Large scale forming simulation by using DAMASK-based crystal plasticity methods
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming. more
Thermo-chemo-mechanical coupling during thermomechanical processing of microalloyed steels (TCMPrecipSteel)
Thermo-chemo-mechanical interactions due to thermally activated and/or mechanically induced processes govern the constitutive behaviour of metallic alloys during production and in service. Understanding these mechanisms and their influence on the material behaviour is of very high relevance for designing new alloys and corresponding thermomechanical processing routes. more
DAMASK - the Düsseldorf Advanced Material Simulation Kit
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in polycrystalline aggregates. more
DENS - Digitally Enhanced New Steel Product Development
New product development in the steel industry nowadays requires faster development of the new alloys with increased complexity. Moreover, for these complex new steel grades, it is more challenging to control their properties during the process chain. This leads to more experimental testing, more plant trials and also higher rejections due to unmatched requirements. Therefore, the steel companies wish to have a sophisticated offline through process model to capture the microstructure and engineering property evolution during manufacturing. more
Go to Editor View