Haghighat, S. M. H.; Eggeler, G. F.; Raabe, D.: Mesoscale modelling of the influence of loading conditions on the dislocation mobility and creep process in single crystal Ni base superalloys. KTH Stockholm-Sweden, Stockholm, Sweden (2014)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Investigations to understand the mechanisms during electropolishing of NiTi. 6th International Symposium on Electrochemical Micro & Nanosystem Technologies, Bonn, Germany (2006)
Neelakantan, L.; Eggeler, G. F.; Hassel, A. W.: Electropolishing of NiTi - Insight its mechanism. 58th Annual Meeting of the International Society of Electrochemistry, Banff, Canada (2007)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufac-turing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Hariharan, A.: On the interfacial defect formation mechanism during laser additive manufacturing of polycrystalline superalloys. Dissertation, Ruhr-Universität Bochum (2019)
Luo, W.: Mechanical properties of the cubic and hexagonal NbCo2 Laves phases studied by micromechanical testing. Dissertation, Ruhr-Universität Bochum (2019)
Wu , X.: Elementary deformation processes during low temperature and high stress creep of Ni-base single crystal superalloys. Dissertation, Ruhr-University Bochum, Bochum, Germany (2016)
Aghajani, A.: Evolution of microstructure during long-term creep of a tempered martensite ferritic steel. Dissertation, Ruhr-University Bochum, Bochum (2009)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
At finite temperatures lattice vibrations and magnetic fluctuations are coexisting. To study potential coupling effects, a method is required, which considers both, the spin and the lattice degrees of freedom, simultaneously. We develop and implement such a method by combining atomistic spin dynamics with ab initio molecular dynamics.
Electron microscopes offer unique capabilities to probe materials with extremely high spatial resolution. Recent advancements in in situ platforms and electron detectors have opened novel pathways to explore local properties and the dynamic behaviour of materials.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes.
Atom probe tomography (APT) is a material analysis technique capable of 3D compositional mapping with sub-nanometer resolution. The specimens for APT are shaped as sharp needles (~100 nm radius at the apex), so as to reach the necessary intense electrostatic fields, and are typically prepared via focused ion beam (FIB) based milling.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…