Friák, M.; Tytko, D.; Holec, D.; Choi, P.-P.; Eisenlohr, P.; Raabe, D.; Neugebauer, J.: Synergy of atom-probe structural data and quantum-mechanical calculations in a theory-guided design of extreme-stiffness superlattices containing metastable phases. New Journal of Physics 17 (9), 093004 (2015)
Ma, D.; Friák, M.; von Pezold, J.; Neugebauer, J.; Raabe, D.: Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses. Acta Materialia 98, 12303, pp. 367 - 376 (2015)
Ma, D.; Friák, M.; von Pezold, J.; Raabe, D.; Neugebauer, J.: Computationally efficient and quantitatively accurate multiscale simulation of solid-solution strengthening by ab initio calculation. Acta Materialia 85, pp. 53 - 66 (2015)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Start of a collaborative research project on the sustainable production of manganese and its alloys being funded by European Union with 7 million euros
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science