Liu, W. C.; Man, C.-S.; Raabe, D.; Morris, J. G.: Effect of hot and cold deformation on the recrystallization texture of continuous cast AA 5052 aluminum alloy. Scripta Materialia 53 (11), pp. 1273 - 1277 (2005)
Song, R.; Ponge, D.; Raabe, D.: Influence of Mn Content on the Microstructure and Mechanical Properties of Ultrafine Grained C–Mn Steels. ISIJ International 45/11, pp. 1721 - 1726 (2005)
Sandim, H. R. Z.; Raabe, D.: EBSD study of grain subdivision of a Goss grain in coarse-grained cold-rolled niobium. Scripta Materialia 53 (2), pp. 207 - 212 (2005)
Song, R.; Ponge, D.; Raabe, D.: Improvement of the work hardening rate of ultrafine grained steels through second phase particles. Scripta Materialia 52/11, pp. 1075 - 1080 (2005)
Song, R.; Ponge, D.; Raabe, D.; Kaspar, R.: Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Materialia 53 (3), pp. 845 - 858 (2005)
Bastos, A.; Raabe, D.; Zaefferer, S.; Schuh, C.: Characterization of Nanostructured Electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). Mater. Res. Soc. Sympos. Proc. 880E, BB1.3. (2005)
Godara, A.; Raabe, D.: Mesoscale simulation of the kinetics and topology of spherulite growth during crystallization of isotactic polypropylen (iPP) by using a cellular automaton. (2005)
Huh, M.-Y.; Lee, J.-H.; Park, S. H.; Engler, O.; Raabe, D.: Effect of Through-Thickness Macro and Micro-Texture Gradients on Ridging of 17%Cr Ferritic Stainless Steel Sheet. Steel Research Int. 76, 11, pp. 797 - 806 (2005)
Raabe, D.; Hantcherli, L.: 2D cellular automaton simulation of the recrystallization texture of an IF sheet steel under consideration of Zener pinning. Computational Materials Science 34, pp. 299 - 313 (2005)
Raabe, D.; Romano, P.; Al-Sawalmih, A.; Sachs, C.; Servos, G.; Hartwig, H. G.: Mesostructure of the Exoskeleton of the Lobster Homarus Americanus. Mater. Res. Soc. Sympos. Proc. 874, pp. 155 - 160 (2005)
Raabe, D.; Romano, P.; Sachs, C.; Al-Sawalmih, A.; Brokmeier, H. G.; Yi, S. B.; Servos, G.; Hartwig, H. G.: Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nano-composite tissue. Journal of Crystal Growth 283, 1-2, pp. 1 - 7 (2005)
Raabe, D.; Sachs, C.; Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia 53, pp. 4281 - 4292 (2005)
Raabe, D.; Wang, Y.; Roters, F.: Crystal plasticity simulation study on the influence of texture on earing in steel. Computational Materials Science 34, pp. 221 - 234 (2005)
Storojeva, L.; Ponge, D.; Raabe, D.; Kaspar, R.: On the influence of heavy warm reduction on the microstructure and mechanical properties of a medium-carbon ferritic steel. Zeitschrift für Metallkunde 95/12, pp. 1108 - 1114 (2004)
Storojeva, L.; Ponge, D.; Kaspar, R.; Raabe, D.: Development of Microstructure and Texture of Medium Carbon Steel during Heavy Warm Deformation. Acta Materialia 52/8, pp. 2209 - 2220 (2004)
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In order to develop more efficient catalysts for energy conversion, the relationship between the surface composition of MXene-based electrode materials and its behavior has to be understood in operando. Our group will demonstrate how APT combined with scanning photoemission electron microscopy can advance the understanding of complex relationships…
To advance the understanding of how degradation proceeds, we use the latest developments in cryo-atom probe tomography, supported by transmission-electron microscopy. The results showcase how advances in microscopy & microanalysis help bring novel insights into the ever-evolving microstructures of active materials to support the design of better…
The worldwide developments of electric vehicles, as well as large-scale or grid-scale energy storage to compensate the intermittent nature of renewable energy generation has generated a surge of interest in battery technology. Understanding the factors controlling battery capacity and, critically, their degradation mechanisms to ensure long-term…
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…