Posner, R.; Fink, N.; Giza, G.; Grundmeier, G.: Corrosive delamination and ion transport along stretch-formed thin conversion films on galvanized steel. Surface and Coatings Technology 253, pp. 227 - 233 (2014)
Posner, R.; Fink, N.; Wolpers, M.; Grundmeier, G.: Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel. Surface and Coatings Technology 228, pp. 286 - 295 (2013)
Özcan, Ö.; Pohl, K.; Keil, P.; Grundmeier, G.: Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates. Electrochemistry Communications 13 (8), pp. 837 - 839 (2011)
Giza, M.; Grundmeier, G.: Combination of FTIR Reflection Absorption Spectroscopy and Work Function Measurements for In Situ Studies of Plasma Modified Passive Films on MgZn2. Plasma Processes and Polymers 8 (7), pp. 607 - 616 (2011)
Itani, H.; Santa, M.; Keil, P.; Grundmeier, G.: Backside SERS Studies of Inhibitor Transport Through Polyelectrolyte Films on Ag-substrates. Journal of Colloid and Interface Science 357 (2), pp. 480 - 486 (2011)
Posner, R.; Sundell, P. E.; Bergman, T.; Roose, P.; Heylen, M.; Grundmeier, G.; Keil, P.: UV-Curable Polyester Acrylate Coatings: Barrier Properties and Ion Transport Kinetics Along Polymer/Metal Interfaces. Journal of the Electrochemical Society 158 (6), pp. C185 - C193 (2011)
Posner, R.; Santa, M.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel I. Interface Potentials and Characteristics of Ion Transport Processes. Journal of the Electrochemical Society 158 (3), pp. C29 - C35 (2011)
Santa, M.; Posner, R.; Grundmeier, G.: Wet- and Corrosive De-Adhesion Processes of Water-Borne Epoxy Film Coated Steel II. The Influence of -Glycidoxypropyltrimethoxysilane as an Adhesion Promoting Additive. Journal of the Electrochemical Society 158 (3), pp. C36 - C41 (2011)
Grundmeier, G.; Posner, R.: Disbonding processes at polymer-metal interfaces: From a molecular-level understanding to self-healing processes. Galvanotechnik 101 (6), pp. 1253 - 1255 (2010)
Posner, R.; Giza, G.; Marazita, M.; Grundmeier, G.: Ion transport processes at polymer/oxide/metal interfaces under varying corrosive conditions. Corrosion Science 52 (5), pp. 1838 - 1846 (2010)
Posner, R.; Marazita, M.; Amthor, S.; Roschmann, K. J.; Grundmeier, G.: Influence of interface chemistry and network density on interfacial ion transport kinetics for styrene/acrylate copolymer coated zinc and iron substrates. Corrosion Science 52 (3), pp. 754 - 760 (2010)
Titz, T.; Hoerzenberger, F.; Van den Bergh, K.; Grundmeier, G.: Correlation of interfacial electrode potential and corrosion resistance of plasma polymer coated galvansied steel. Part 2: Influence of forming induced defects. Corrosion Science 52 (2), pp. 378 - 386 (2010)
Thissen, P.; Valtiner, M.; Grundmeier, G.: Stability of Phosphonic Acid Self-Assembled Monolayers on Amorphous and Single-Crystalline Aluminum Oxide Surfaces in Aqueous Solution. Langmuir 26 (1), pp. 156 - 164 (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, we aim to realize an optimal balance among the strength, ductility and soft magnetic properties in soft-magnetic high-entropy alloys. To this end, we introduce a high-volume fraction of coherent and ordered nanoprecipitates into the high-entropy alloy matrix. The good combination of strength and ductility derives from massive solid…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…
This project aims to investigate the influence of grain boundaries on mechanical behavior at ultra-high strain rates and low temperatures. For this micropillar compressions on copper bi-crystals containing different grain boundaries will be performed.
The objective of the project is to investigate grain boundary precipitation in comparison to bulk precipitation in a model Al-Zn-Mg-Cu alloy during aging.
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.