Khorrami, M. S.; Mianroodi, J. R.; Svendsen, B.: Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals. Journal of the Mechanics and Physics of Solids 164, 104897 (2022)
Rezaei, S.; Mianroodi, J. R.; Brepols, T.; Reese, S.: Direction-dependent fracture in solids: Atomistically calibrated phase-field and cohesive zone model. Journal of the Mechanics and Physics of Solids 147, 104253 (2021)
Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Rezaei, S.; Mianroodi, J. R.; Khaledi, K.; Reese, S.: A nonlocal method for modeling interfaces: Numerical simulation of decohesion and sliding at grain boundaries. Computer Methods in Applied Mechanics and Engineering 362, 112836 (2020)
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Start of a collaborative research project on the sustainable production of manganese and its alloys being funded by European Union with 7 million euros