Gutiérrez-Urrutia, I.: Electron channelling contrast imaging under controlled diffraction conditions: A powerful technique for quantitative microstructural characterization of deformed materials. International Symposium on Plastic Deformation and Texture Analysis, Alcoy, Spain (2012)
Gutiérrez-Urrutia, I.; Marceau, R. K. W.; Raabe, D.: Multi-scale investigation of strain-hardening mechanisms in high-Mn steels from the mesoscale to the atomic scale. Lecture at Materials Department, Oxford University, Oxford, UK (2012)
Chen, Z.; Boehlert, C.; Gutiérrez-Urrutia, I.; Llorca, J.; Pérez-Prado, M. T.: In-situ analysis of the tensile deformation mechanisms in rolled AZ31. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: Evaluation of twin boundary interfaces to strain hardening by electron channeling contrast imaging. TMS 2012 Annual Meeting, Orlando, FL, USA (2012)
Gutiérrez-Urrutia, I.: Electron channeling contrast imaging: A powerful technique for quantitative microstructural characterization of deformed materials in the SEM. Seminar at Bundesanstalt fuer Materialforschung-pruefung (BAM), Berlin, Germany (2012)
Gutiérrez-Urrutia, I.; Raabe, D.: New insights on quantitative microstructure characterization by electron channeling contrast imaging under controlled diffraction conditions in the SEM. Microscopy & Microanalysis, Phoenix, AZ, USA (2012)
Gutierrez-Urrutia, I.; Raabe, D.: Study of deformation twinning and planar slip in a TWIP steel by Electron Channelling Contrast Imaging in a SEM. International Conference on the Textures of Materials, ICOTOM 16, Bombay, India (2011)
Pérez-Prado, M. T.; Boehlert, C.; Llorca, J.; Gutiérrez-Urrutia, I.: In-situ analysis of deformation and recrystallization mechanisms. European Congress on Advanced Materials and Processes, EUROMAT 2011, Montpellier, France (2011)
Gutierrez-Urrutia, I.; Raabe, D.: Dislocation imaging by electron channeling contrast under controlled diffraction conditions in the SEM. Microscopy Conference MC 2011, Kiel, Germany (2011)
Gutierrez-Urrutia, I.; Dick, A.; Hickel, T.; Neugebauer, J.; Raabe, D.: Understanding TWIP steel microstructures by using advanced electron microscopy and ab initio predictions. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Gutierrez-Urrutia, I.; Raabe, D.: The influence of planar slip and deformation twinning on mechanical behavior in TWIP steels. International Conference on Processing & Manufacturing of Advanced Materials THERMEC 2011, Québec City, QC, Canada (2011)
Raabe, D.; Gutierrez-Urrutia, I.: Effect of strain path and texture on microstructure in Fe–22 wt.% Mn–0.6 wt.% C TWIP steel. 1st International Conference on High Manganese Steels 2011, Seoul, South Korea (2011)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Effect of grain size and heterogeneous strain distribution on deformation twinning in a Fe–22Mn–0.6C TWIP steel. THERMEC 2009, Berlin, Germany (2009)
Gutierrez-Urrutia, I.; Zaefferer, S.; Raabe, D.: Quantitative electron channelling contrast imaging: A promising tool for the study of dislocation structures in SEM. Electron Backscatter Diffraction Meeting, Swansea, UK (2009)
Archie, F. M. F.: Nanostructured High-Mn Steels by High Pressure Torsion: Microstructure-Mechanical Property Relations. Master, Materials Chemistry, Lehrstuhl für Werkstoffchemie, RWTH Aachen, Aachen, Germany (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
A novel design with independent tip and sample heating is developed to characterize materials at high temperatures. This design is realized by modifying a displacement controlled room temperature micro straining rig with addition of two miniature hot stages.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.