Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth. Thin Solid Films 722, 138574 (2021)
Frank, A.; Wochnik, A. S.; Bein, T.; Scheu, C.: A biomolecule-assisted, cost-efficient route for growing tunable CuInS2 films for green energy application. RSC Advances 7 (33), pp. 20219 - 20230 (2017)
Hettstedt, C.; Frank, A.; Karaghiosoff, K.: Synthesis of two p-methoxyphenyl substituted phosphines. Phosphorus, Sulfur, and Silicon and the Related Elements 191 (10), pp. 1297 - 1301 (2016)
Frank, A.; Changizi, R.; Scheu, C.: Preparative and analytical challenges in electron microscopic investigation of nanostructured CuInS2 thin films for energy applications. Microscience Microscopy Congress (MMC) 2019, Manchester, UK (2019)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Electron microscopic investigation of the influence of plasma parameters on VOx films deposited by a plasma ion assisted process. E-MRS 2019 Spring Meeting, Nice, France (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...