Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth. Thin Solid Films 722, 138574 (2021)
Frank, A.; Wochnik, A. S.; Bein, T.; Scheu, C.: A biomolecule-assisted, cost-efficient route for growing tunable CuInS2 films for green energy application. RSC Advances 7 (33), pp. 20219 - 20230 (2017)
Hettstedt, C.; Frank, A.; Karaghiosoff, K.: Synthesis of two p-methoxyphenyl substituted phosphines. Phosphorus, Sulfur, and Silicon and the Related Elements 191 (10), pp. 1297 - 1301 (2016)
Frank, A.; Changizi, R.; Scheu, C.: Preparative and analytical challenges in electron microscopic investigation of nanostructured CuInS2 thin films for energy applications. Microscience Microscopy Congress (MMC) 2019, Manchester, UK (2019)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Electron microscopic investigation of the influence of plasma parameters on VOx films deposited by a plasma ion assisted process. E-MRS 2019 Spring Meeting, Nice, France (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.