Korbmacher, D.; von Pezold, J.; Spatschek, R.: Hydrogen embrittlement - A scale bridging perspective. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2012)
Spatschek, R.; Fleck, M.; Pilipenko, D.; Brener, E.: Brittle fracture in viscoelastic materials as a pattern formation process. EUROMAT, Montpellier, France (2011)
Li, X.; Bottler, F.; Spatschek, R. P.; Scherf, A.; Heilmaier, M.; Stein, F.: Novel Lamellar in situ Composite Materials in the Al-Rich Part of the Fe-Al System. Int. Conf. The Materials Chain: From Discovery to Production, University Bochum, Bochum, Germany (2016)
Monas, A.; Spatschek, R.; Hueter, C.; Tabatabaei, F.; Brener, E. A.: Phase field modeling of phase transitions stimulated by Joule heating. Meeting of the SFB 917, Schleiden, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…