Khorrami, M. S.; Mianroodi, J. R.; Svendsen, B.: Finite-deformation phase-field microelasticity with application to dislocation core and reaction modeling in fcc crystals. Journal of the Mechanics and Physics of Solids 164, 104897 (2022)
Gierden, C.; Kochmann, J.; Waimann, J.; Svendsen, B.; Reese, S.: A Review of FE-FFT-Based Two-Scale Methods for Computational Modeling of Microstructure Evolution and Macroscopic Material Behavior. Archives of Computational Methods in Engineering 29, pp. 4115 - 4135 (2022)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: A geometrically adapted reduced set of frequencies for a FFT-based microstructure simulation. Computer Methods in Applied Mechanics and Engineering 386, 114131 (2021)
Gierden, C.; Waimann, J.; Svendsen, B.; Reese, S.: FFT-based simulation using a reduced set of frequencies adapted to the underlying microstructure. Computer Methods in Materials Science 21 (1), pp. 51 - 58 (2021)
Shanthraj, P.; Liu, C.; Akbarian, A.; Svendsen, B.; Raabe, D.: Multi-component chemo-mechanics based on transport relations for the chemical potential. Computer Methods in Applied Mechanics and Engineering 365, 113029 (2020)
Mianroodi, J. R.; Svendsen, B.: Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals. Materials 13 (10), 2238 (2020)
Alipour, A.; Reese, S.; Svendsen, B.; Wulfinghoff, S.: A grain boundary model considering the grain misorientation within a geometrically nonlinear gradient-extended crystal viscoplasticity theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2235), 20190581 (2020)
Svendsen, B.: Constitutive relations for polar continua based on statistical mechanics and spatial averaging. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476 (2233), 20190407 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…