Dsouza, R.; Poul, M.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free computation of finite temperature material properties in isochoric and isobaric ensembles using the mean-field anharmonic bond model. Physical Review B 109, 064108 (2024)
Dsouza, R.; Huber, L.; Grabowski, B.; Neugebauer, J.: Approximating the impact of nuclear quantum effects on thermodynamic properties of crystalline solids by temperature remapping. Physical Review B 105 (18), 184111 (2022)
Dsouza, R.; Huber, L.; Swinburne, T. D.; Neugebauer, J.: Sampling-free thermodynamics in bulk crystalline metals from the mean-field anharmonic bond model. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2024)
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…