Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Spontaneous fluctuations in a plasma ion assisted deposition – correlation between deposition conditions and vanadium oxide thin film growth. Thin Solid Films 722, 138574 (2021)
Frank, A.; Wochnik, A. S.; Bein, T.; Scheu, C.: A biomolecule-assisted, cost-efficient route for growing tunable CuInS2 films for green energy application. RSC Advances 7 (33), pp. 20219 - 20230 (2017)
Hettstedt, C.; Frank, A.; Karaghiosoff, K.: Synthesis of two p-methoxyphenyl substituted phosphines. Phosphorus, Sulfur, and Silicon and the Related Elements 191 (10), pp. 1297 - 1301 (2016)
Frank, A.; Changizi, R.; Scheu, C.: Preparative and analytical challenges in electron microscopic investigation of nanostructured CuInS2 thin films for energy applications. Microscience Microscopy Congress (MMC) 2019, Manchester, UK (2019)
Gänsler, T.; Frank, A.; Betzler, S. B.; Scheu, C.: Electron microscopy studies of Nb3O7(OH) nanostructured cubes - insights in the growth mechanism. Microscience Microscopy Congress MMC2019, Manchester, UK (2019)
Frank, A.; Dias, M.; Hieke, S. W.; Kruth, A.; Scheu, C.: Electron microscopic investigation of the influence of plasma parameters on VOx films deposited by a plasma ion assisted process. E-MRS 2019 Spring Meeting, Nice, France (2019)
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Multiple Exciton Generation (MEG) is a promising pathway towards surpassing the Shockley-Queisser limit in solar energy conversion efficiency, where an incoming photon creates a high energy exciton, which then decays into multiple excitons.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.