Lübke, A.; Loza, K.; Patnaik, R.; Enax, J.; Raabe, D.; Prymak, O.; Fabritius, H.-O.; Gaengler, P.; Epple, M.: Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Advances 7 (11), pp. 6215 - 6222 (2017)
Prymak, O.; Stein, F.: The Ternary Cr–Al–Nb Phase Diagram: Experimental Investigations of Isothermal Sections at 1150, 1300 and 1450 °C. Journal of Alloys and Compounds 513, pp. 378 - 386 (2012)
Prymak, O.; Stein, F.: Solidification and High-Temperature Phase Equilibria in the Fe–Al-rich Part of the Fe–Al–Nb System. Intermetallics 18 (7), pp. 1322 - 1326 (2010)
Prymak, O.; Stein, F.; Kerkau, A.; Ormeci, A.; Kreiner, G.; Frommeyer, G.; Raabe, D.: Phase equilibria in the ternary Nb–Cr–Al system and site occupation in the hexagonal C14 Laves phase Nb(AlxCr1–x)2. In: Materials Research Society Symposium Proceedings, pp. 499 - 504 (Ed. Proceedings, M. S.). Materials Research Society Symposium. (2009)
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
Multiple Exciton Generation (MEG) is a promising pathway towards surpassing the Shockley-Queisser limit in solar energy conversion efficiency, where an incoming photon creates a high energy exciton, which then decays into multiple excitons.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.