Tasan, C. C.; Diehl, M.; Yan, D.; Zambaldi, C.; Shanthraj, P.; Roters, F.; Raabe, D.: Integrated experimental and simulation analysis of stress and strain partitioning in dual phase steel. 17th U.S. National Congress on Theoretical and Applied Mechanics Michigan State University, East Lansing, MI, USA (2014)
Tasan, C. C.; Jeannin, O.; Barbier, D.; Morsdorf, L.; Wang, M.; Ponge, D.; Raabe, D.: In-situ characterization of martensite plasticity by high resolution microstructure and microstrain mapping. ICOMAT 2014, International Conference on Martensitic Transformations 2014, Bilbao, Spain (2014)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Deformation micro-mechanisms in medium-Mn TRIP-maraging steel. 2nd International Conference on High Manganese Steel, HMnS 2014, Aachen, Germany (2014)
Springer, H.; Belde, M.; Raabe, D.: Bulk combinatorial design of high strength martensitic steels utilising austenite reversion and cryogenic strengthening. Thermec Conference, Las Vegas, NV, USA (2013)
Tasan, C. C.; Springer, H.; Lai, M.; Zhang, J.-I.; Raabe, D.: Influence of oxygen on the deformation behavior of Ti–Nb–Ta–Zr alloys. Thermec 2013, Las Vegas, NV, USA (2013)
Haghighat, S. M. H.; Eggeler, G.; Raabe, D.: Discrete Dislocation Dynamics Study of Creep Anisotropy in Single Crystal Ni Base Superalloys. MRS Fall Meeting, Bosten, USA (2013)
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.