Huemer, K.; Karsten, S.; Balusundaram, K.; Raabe, D.; Hild, S.; Fabritius, H.: Structural organization and mineral distribution in load-bearing exoskeleton parts of the edible crab Cancer pagurus. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Fabritius, H.; Karsten, E. S.; Balasundaram, K.; Hild, S.; Huemer, K.; Raabe, D.: Influence of Structural Organization and Mineral Distribution on the Local Mechanical Properties of Mineralized Cuticle from the Crab Cancer pagurus. Materials Science and Engineering MSE 2010, Darmstadt, Germany (2010)
Fabritius, H.; Hild, S.; Raabe, D.: Leg joints of the lobster Homarus americanus as an example of cuticle modification for specific functions: Variations in structure, composition and properties. MRS Fall Meeting 2008, Boston, MA, USA (2008)
Struss, J.; Znidarsic, N.; Ziegler, A.; Hild, S.: Microscopic anatomy and mineral composition of cuticle in amphibious isopods Ligia italica and Titanethes albus (Crustacea:Isopoda). European Microscopy Congeress EMC 2008, Aachen, Germany (2008)
Ziegler, A.; Hild, S.: Distribution and function of amorphous CaCO3 and Calcite within the tergite cuticle of terrestrial isopods (Crustacea). European Microscopy Congeress EMC 2008, Aachen, Germany (2008)
Hild, S.; Ziegler, A.: The isopod cuticle: A model to study formation and function of amorphous calcium carbonate in calcified tissues. European Geosciences Union General Assembly, Vienna, Austria (2008)
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Femtosecond laser pulse sequences offer a way to explore the ultrafast dynamics of charge density waves. Designing specific pulse sequences may allow us to guide the system's trajectory through the potential energy surface and achieve precise control over processes at surfaces.