Makineni, S. K.; Raabe, D.; Gault, B.: Development of high temperature Mo–Si–B based alloy through Laser Additive Manufacturing. Intermetallics 2017, Bad Staffelstein, Germany (2017)
Rusitzka, A. K.; Stephenson, L.; Gremer, L.; Raabe, D.; Willbold, D.; Gault, B.: Getting insights to Alzheimer‘s disease by atom probe tomography. 6th International caesar conference, Overcoming Barriers — atomic-resolution and beyond: advances in molecular electron microscopy, Bonn, Germany (2017)
Kwiatkowski da Silva, A.; Ponge, D.; Inden, G.; Gault, B.; Raabe, D.: Physical Metallurgy of segregation, austenite reversion, carbide precipitation and related phenomena in medium Mn steels. Gordon Research Conference: Physical Metallurgy, Biddeford, ME, USA (2017)
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2024, Imperial College London, UK, 2024-04 - 2024-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2023, Imperial College London, UK, 2023-04 - 2023-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2022, Imperial College London, UK, 2022-04 - 2022-07
Gault, B.: Graduate course on Atom Probe Tomography, as part of the Centre for Doctoral Training on Materials Charactisation. Lecture: SS 2021, Imperial College London, UK, 2021-04 - 2021-07
This project studies the mechanical properties and microstructural evolution of a transformation-induced plasticity (TRIP)-assisted interstitial high-entropy alloy (iHEA) with a nominal composition of Fe49.5Mn30Co10Cr10C0.5 (at. %) at cryogenic temperature (77 K). We aim to understand the hardening behavior of the iHEA at 77 K, and hence guide the future design of advanced HEA for cryogenic applications.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…