Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Using spectral-based representative volume element crystal plasticity simulations to predict yield surface evolution during large scale forming simulations. Journal of Materials Processing Technology 277, 116449 (2020)
Han, F.; Roters, F.; Raabe, D.: Microstructure-based multiscale modeling of large strain plastic deformation by coupling a full-field crystal plasticity-spectral solver with an implicit finite element solver. International Journal of Plasticity 125, pp. 97 - 117 (2020)
Chen, Y.; Cheng, L.; Yang, G.; Lu, Y.; Han, F.: Deformation behavior of a β-solidifying TiAl alloy within β phase field and its effect on the β→α transformation. Metals 8 (8), 605 (2018)
Yang, G.; Ren, W.; Liu, Y.; Song, W.; Han, F.; Chen, Y.; Cheng, L.: Effect of pre-deformation in the β phase field on the microstructure and texture of the α phase in a boron-added β-solidifying TiAl alloy. Journal of Alloys and Compounds 742, pp. 304 - 311 (2018)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modeling of plasticity. ICIAM 2019 - The 9th International Congress on Industrial and Applied Mathematics, Valencia, Spain (2019)
Han, F.; Diehl, M.; Roters, F.; Raabe, D.: Multi-scale modelling of sheet metal forming by coupling FEM with a CP-Spectral solver using the DAMASK modelling package. 10th European Solid Mechanics Conference (ESMC2018), Bologna, Italy (2018)
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.