Stock, P.; Utzig, T.; Valtiner, M.: Soft matter interactions at the molecular scale: interaction forces and energies between single hydrophobic model peptides. Physical Chemistry Chemical Physics 19 (6), pp. 4216 - 4221 (2017)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie International Edition in English 55, pp. 9524 - 9528 (2016)
Utzig, T.; Stock, P.; Valtiner, M.: Resolving Non-Specific and Specific Adhesive Interactions of Catechols at Solid/Liquid Interfaces at the Molecular Scale. Angewandte Chemie 128, pp. 9676 - 9680 (2016)
Utzig, T.; Stock, P.; Raman, S.; Valtiner, M.: Targeted Tuning of Interactive Forces by Engineering of Molecular Bonds in Series and Parallel Using Peptide-Based Adhesives. Langmuir 31 (40), pp. 11051 - 11057 (2015)
Stock, P.; Utzig, T.; Valtiner, M.: Direct and quantitative AFM measurements of the concentration and temperature dependence of the hydrophobic force law at nanoscopic contacts. Journal of Colloid and Interface Science 446, pp. 244 - 251 (2015)
Hu, Q.; Cheng, H.-W.; Stock, P.; Utzig, T.; Shrestha, B. R.; Valtiner, M.: Elucidating the structure of solid/electrolyte interfaces - Force probe experiments at hydrophilic, hydrophobic and electrified aqueous as well as ionic liquid|electrode interfaces. Bunsenmagazin 2, pp. 49 - 55 (2015)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
Enabling a ‘hydrogen economy’ requires developing fuel cells satisfying economic constraints, reasonable operating costs and long-term stability. The fuel cell is an electrochemical device that converts chemical energy into electricity by recombining water from H2 and O2, allowing to generate environmentally-friendly power for e.g. cars or houses…