Elstnerová, P.; Friák, M.; Šob, M.; Neugebauer, J.: Prediction of the Ground State of NiN and Ni2N within the Quantum Mechanical Study. Multiscale Design of Advanced Materials, Brno, Czech Republic (2011)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Enhancing mechanical properties of calcite by Mg substitutions - A Quantum-Mechanical Study. 12th International Symposium on Physics of Materials, Prague, Czech Republic (2011)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Enhancing mechanical properties of calcite by Mg substitutions - A Quantum-Mechanical Study. Multi-Scale Mechanics of Biological and Bio-Inspired Hierarchical Materials and Surfaces, Glasgow, UK (2011)
Elstnerová, P.; Friák, M.; Neugebauer, J.: Enhancing mechanical properties of calcite by Mg substitutions - A quantum-mechanical study. EuroBioMat - European Symposium on Biomaterials and Related Areas, Jena, Germany (2011)
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.