Eisenlohr, P.: Einheitliche Beschreibung dynamischer und statischer Erholung von Stufenversetzungen mittels Dipolweitenverteilungen. Seminar of the Institute of Materials Physics, University of Vienna, Vienna, Austria (2003)
Reuber, J. C.; Eisenlohr, P.; Roters, F.: Boundary Layer Formation in Continuum Dislocation Dynamics. Dislocations 2016, Purdue University, West Lafayette, IN, USA (2016)
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.: Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2013)
Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. 11th GAMM-Seminar on Microstructures, Essen, Germany (2012)
Diehl, M.; Eisenlohr, P.; Roters, F.; Tasan, C. C.; Raabe, D.: Using a "Virtual Laboratory" to Derive Mechanical Properties of Complex Microstructures. Materials to Innovate Industry and Society, Noordwijkerhout, The Netherlands (2011)
Kords, C.; Eisenlohr, P.; Roters, F.: Signed dislocation densities and their spatial gradients as basis for a nonlocal crystal plasticity model. MMM 2010 Fifth International Conference Multiscale Materials Modeling, Freiburg, Germany (2010)
Kords, C.; Eisenlohr, P.; Roters, F.: A Non-Local Dislocation Density Based Constitutive Model for Crystal Plasticity. Junior Euromat 2010, Lausanne, Switzerland (2010)
Eisenlohr, P.: On the role of dislocation dipoles in unidirectional deformation of crystals. Dissertation, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen (2004)
Local lattice distortion is one of the core effects in complex concentrated alloys (CCAs). It has been expected that the strength CCAs can be improved by inducing larger local lattice distortions. In collaboration with experimentalists, we demonstrated that VCoNi has larger local lattice distortions and indeed has much better strength than the…
The nano-structure of surfaces influences the interactions and reactions occurring on it, which has strong impacts for applications in diverse fields, such as wetting phenomena, electrochemistry or biotechnology. We study these nanoscale structures on functional interfaces by nano-spectroscopy. Furthermore we try to understand their influence on…