Hickel, T.; Uijttewaal, M.; Grabowski, B.; Neugebauer, J.: Determination of symmetry reduced structures by a soft-phonon analysis in magnetic shape memory alloys. Theory meets industry. The impact of density-functional calculation on materials science, Vienna, Austria (2007)
Grabowski, B.; Hickel, T.; Neugebauer, J.: Accuracy and error bars of DFT calculated thermodynamic properties for elementary metals. 13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods, Trieste, Italy (2007)
Hickel, T.; Grabowski, B.; Uijttewaal, M.; Neugebauer, J.: Determination of symmetry-reduced structures by a soft-phonon analysis in magnetic shape memory alloys. 13th International Workshop on Computational Physics and Materials Science: Total Energy and Force Methods, Trieste, Italy (2007)
Hickel, T.; Grabowski, B.; Neugebauer, J.; Neumann, B.; Neumann, K.-U.; Ziebeck, K. R. A.: Temperature dependent properties of the Heusler alloy Ni2+xMn1-xGa. International Workshop on Ab initio Description of Iron and Steel (ADIS2006), Status and future challenges, Ringberg Castle, Germany (2006)
Hickel, T.; Nolting, W.: A self-consistent projection-operator approach to the Kondo-lattice model. The International Conference on Strongly Correlated Electron Systems, Vienna, Austria (2005)
Hickel, T.; Grabowski, B.; Neumann, K.; Neumann, K.-U.; Ziebeck, K. R. A.; Neugebauer, J.: Temperature dependent properties of Ni-rich Ni2MnGa. Materials Research Society fall meeting, Boston, MA, USA (2005)
Magnetic properties of magnetocaloric materials is of utmost importance for their functional applications. In this project, we study the magnetic properties of different materials with the final goal to discover new magnetocaloric materials more suited for practical applications.
Water electrolysis has the potential to become the major technology for the production of the high amount of green hydrogen that is necessary for its widespread application in a decarbonized economy. The bottleneck of this electrochemical reaction is the anodic partial reaction, the oxygen evolution reaction (OER), which is sluggish and hence…
We have studied a nanocrystalline AlCrCuFeNiZn high-entropy alloy synthesized by ball milling followed by hot compaction at 600°C for 15 min at 650 MPa. X-ray diffraction reveals that the mechanically alloyed powder consists of a solid-solution body-centered cubic (bcc) matrix containing 12 vol.% face-centered cubic (fcc) phase. After hot compaction, it consists of 60 vol.% bcc and 40 vol.% fcc. Composition analysis by atom probe tomography shows that the material is not a homogeneous fcc–bcc solid solution